Closed-book and closed-notes, three hours

Answer questions 1 and 2 plus any other six questions (8 total). If you answer all of the last 7 questions, I will use your best 6 for computing your grade. (You have nothing to lose by attempting all questions.) Be sure to give complete and clear explanations in your answers to questions 3 thru 9.

1. (20 pts) Let l^{2} denote the set of all real-valued square-summable sequences, equipped with the usual norm

$$
\|x\|=\left(\sum_{k=1}^{\infty}\left(x_{k}\right)^{2}\right)^{\frac{1}{2}} \quad \text { for all } x \in l^{2}
$$

Define $T: l^{2} \rightarrow l^{2}$ by

$$
(T x)_{k}=\left\{\begin{array}{l}
0 \text { if } k \text { is odd } \\
x_{\frac{k}{2}} \text { if } k \text { is even }
\end{array} \quad \text { for all } x \in l^{2},\right.
$$

i.e.

$$
T x=\left(0, x_{1}, 0, x_{2}, 0, x_{3}, \cdots\right)
$$

You may take it for granted that T is a bounded linear operator from l^{2} to l^{2}.
(a) Is T injective? (Give a brief explanation.)
(b) Is $\mathcal{R}(T)$ dense in l^{2} ? (Give a brief explanation.)
(c) Assuming that we identify the dual space $\left(l^{2}\right)^{*}$ with l^{2} in the usual way, find an expression for the adjoint operator T^{*}.
(d) Is T compact? Explain.
(e) Give an example of a bounded linear mapping $L: l^{2} \rightarrow l^{2}$ such that $T L \neq L T$.
2. (20 pts)
(a) State the Hahn-Banach Theorem for linear spaces in geometric form (i.e., state a result about separation of convex sets).
(b) State the Banach-Steinhaus Theorem (also called the Principle of Uniform Boundedness).
(c) State the Closed Graph Theorem.
(d) State the Riesz-Representation Theorem for Hilbert spaces.
3. (10 pts) Let X and Y be real or complex normed linear spaces, $T: X \rightarrow Y$ be a linear mapping and $x_{0} \in X$ be given. Show that if T is continuous at x_{0} then T is uniformly continuous (on X).
4. (10 pts) Let X be a real or complex normed linear space and let $B \subset X$. (Let's assume that B is nonempty.) Show that B is bounded if and only if

$$
\forall x^{*} \in X^{*}, \quad \sup \left\{\left|x^{*}(x)\right|: x \in B\right\}<\infty .
$$

5. (10 pts) Let X be a real or complex topological vector space, $f: X \rightarrow \mathbb{K}$ be a nontrivial continuous linear functional. Prove or disprove: If $A \subset X$ is open and convex then $f[A]=\{f(x): x \in A\}$ is open and convex in \mathbb{K}. (If you can't answer the question when X is a TVS, I will give 5 points for the correct answer when X is a Banach space.)
6. (10 pts) Let X be a real or complex Banach space and let $x_{0} \in X$ be given. Put

$$
V=\left\{\alpha x_{0}: \alpha \in \mathbb{K}\right\} .
$$

Show that there is a closed subspace W of X with the following property: For every $x \in X$ there is exactly one pair $(v, w) \in V \times W$ such that $x=v+w$. (Please prove this result "from scratch". Do not simply quote a theorem stating that finite-dimensional subspaces are complemented.)
7. (10 pts) Let X be a real or complex Hilbert space with inner product (\cdot, \cdot) and $\left\{x_{n}\right\}_{n=1}^{\infty}$ be an orthonormal sequence of elements of X, i.e.

$$
\left(x_{n}, x_{m}\right)=\left\{\begin{array}{l}
1 \text { if } m=n \\
0 \text { if } m \neq n
\end{array} .\right.
$$

Show that $x_{n} \rightharpoonup 0$ (weakly) as $n \rightarrow \infty$.
8. (10 pts) Let X be complex Hilbert space with inner product (\cdot, \cdot) and let T : $X \rightarrow X$ be a linear mapping satisfying

$$
(T x, y)=i(x, T y) \text { for all } x, y \in X
$$

Here $i^{2}=-1$. Show that T is continuous.
9. (10 pts) Let X be a reflexive real Banach space and $x^{*} \in X^{*}$ be given. Define $g: X \rightarrow \mathbb{R}$ by

$$
g(x)=\|x\|^{2}-x^{*}(x) \text { for all } x \in X
$$

Show that there exists $x_{0} \in X$ such that

$$
g(x) \geq g\left(x_{0}\right) \text { for all } x \in X
$$

Carnegie Mellon University
 Department of Mathematical Sciences
 Functional Analysis Basic Exam - Explanation of Symbols

```
\(\mathcal{N}(T)\) - the null space of \(T\)
\(\mathcal{R}(T)\) - the range of \(T\)
\(\mathcal{L}(X ; Y)\) - the set of all bounded linear operators from \(X\) to \(Y\)
\(X^{*}\) - the topological dual space of a linear space \(X\)
\(T^{*}\) - the adjoint of a bounded linear operator
\(T^{-1}\) - the inverse of a bijective linear operator
\(\mathbb{N}=\{1,2,3, \cdots\}\) the set of all strictly positive integers
\(\mathbb{K}\) - a field that is either \(\mathbb{R}\) or \(\mathbb{C}\)
    \(x_{n} \rightarrow x: \quad x_{n}\) converges strongly to \(x\)
    \(x_{n} \rightharpoonup x: \quad x_{n}\) converges weakly to \(x\)
    \(\operatorname{int}(S)\) - the interior of a set \(S\)
    \(\operatorname{cl}(S)\) - the closure of a set \(S\)
    \(f[S]=\{f(x): x \in S\}\)
```

Remark: My definition of topological vector space includes the Hausdorff property.

