DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

BASIC EXAMINATION: FUNCTIONAL ANALYSIS

September 7, 2017, 4:30pm-7:30pm

1. (i) State the Closed Graph Theorem.

Let $(X, || \cdot ||_X)$ and $(Y, || \cdot ||_Y)$ be Banach spaces.

(ii) Let $T: X \to Y$ be a linear and continuous operator such that Range(T) is closed. Prove that there exists C > 0 such that for every $y \in T(X)$ there exists $x \in X$ such that

$$y = T(x)$$
 and $||x||_X \le C||y||_Y$.

(iii) Let $T:X\to Y$ be a linear operator such that for every sequence $\{x_n\}\subset X$

 $||x_n|| \to 0 \Rightarrow T(x_n) \to 0 \quad \text{in } \sigma(Y, Y').$

Prove that T is continuous, i.e., $T \in \mathcal{L}(X;Y)$.

2. (i) Prove that if $(X, || \cdot ||)$ is a normed space over \mathbb{R} such that X' is separable, then X is also separable.

(ii) Let $(X, || \cdot ||)$ be an infinite dimensional Banach space. Prove that there exists a sequence $\{x_n\}_{n \in \mathbb{N}} \subset X$ such that

$$||x_n|| = 1$$
 for all $n \in \mathbb{N}$, and $x_n \rightharpoonup 0$.

3. Let X and Y be a normed spaces, $X \neq \{0\}$. Prove that Y is a Banach space if and only if the normed space $\mathcal{L}(X;Y)$ is a Banach space.

4. (i) Give the definition of a compact operator between normed spaces.

Let $(X, || \cdot ||_X)$ and $(Y, || \cdot ||_Y)$ be normed spaces over \mathbb{R} .

(ii) Assume that X is a reflexive Banach space, Y is a Banach space, and let $T \in \mathcal{L}(X;Y)$ be such that for every sequence $\{x_n\} \subset X$

$$x_n \rightharpoonup x \quad \text{in } \sigma(X; X') \Rightarrow T(x_n) \to T(x).$$

Prove that T is compact.

(iii) Let $T:X\to Y$ be a linear compact operator. Prove that T^\star is also compact.

5. Let $(H, (\cdot, \cdot))$ be a Hilbert space and let $T : H \to H$ be a linear, continuous operator such that

$$(Tx, x) \ge 0$$
 for all $x \in H$. **(OVER)**

- (i) Prove that $\operatorname{Ker}(T) = (\operatorname{Range}(T))^{\perp}$.
- (ii) Prove that $\mathbb{I} + tT$ is bijective for all t > 0.
- Fix $x \in H$.

(iii) Let $\{t_n\}_{n\in\mathbb{N}}$ be a sequence of positive numbers such that $t_n\to+\infty$ and let x_n satisfy

$$x_n + t_n T x_n = x$$

for all $n \in \mathbb{N}$. Prove that $||x_n|| \leq ||x||$ and that (up to a subsequence) $\{x_n\}_{n \in \mathbb{N}}$ converges weakly to some $\tilde{x} \in \text{Ker}(T)$.

(iv) Prove that $\tilde{x} = \operatorname{Proj}_{\operatorname{Ker}(T)} x$.

(v) Prove that

$$\lim_{t \to +\infty} \left(\mathbb{I} + tT \right)^{-1} x = \operatorname{Proj}_{\operatorname{Ker}(T)} x.$$