Carnegie Mellon University Department of Mathematical Sciences

Functional Analysis Basic Exam – Fall 2016

Closed-book and closed-notes, three hours

Answer questions 1 and 2 plus any other four questions (6 total). If you answer more than 4 of the last 6 questions, be sure to indicate which 4 you would like to have graded.

1. Let l^2 denote the set of all real-valued square-summable sequences, equipped with the usual norm

$$||x|| = \left(\sum_{k=1}^{\infty} (x_k)^2\right)^{\frac{1}{2}}$$
 for all $x \in l^2$.

Define $T: l^2 \to l^2$ by

$$(Tx)_k = \frac{x_{k+2}}{k+2}$$
 for all $x \in l^2$, $k = 1, 2, 3, \cdots$.

You may take it for granted that T is a bounded linear operator from l^2 to l^2 .

- (a) Find ||T||.
- (b) Find $\mathcal{N}(T)$ and $\mathcal{R}(T)$, the null space and range of T.
- (c) Assuming that we identify the dual space $(l^2)^*$ with l^2 in the usual way, find an expression for the adjoint operator T^* .
- (d) Is T compact? Explain.
- 2. (a) State the Hahn-Banach Theorem (in extension form) for linear spaces.
 - (b) State the Banach-Steinhaus Theorem (also called the Principle of Uniform Boundedness).
 - (c) State the Open-Mapping Theorem.
 - (d) Give an example of a Banach space X, a normed linear space Y and a continuous linear bijection $T: X \to Y$ such that T^{-1} is not continuous.
- 3. (a) Give an example of a Banach space Y, a bounded linear operator $L \in \mathcal{L}(Y;Y)$ and a sequence $\{L_n\}_{n=1}^{\infty}$ in $\mathcal{L}(Y;Y)$ such that

$$\forall y \in Y, \ L_n y \to L y \text{ as } n \to \infty,$$

but $||L_n - L|| \not\to 0$ as $n \to \infty$.

(b) Let X be a Banach space, $T \in \mathcal{L}(X; X)$ and a sequence $\{T_n\}_{n=1}^{\infty}$ in $\mathcal{L}(X; X)$ be given. Let $K: X \to X$ be a compact linear operator. Assume that

 $\forall x \in X, \ T_n x \to T x \text{ as } n \to \infty.$

Show that $||T_nK - TK|| \to 0$ as $n \to \infty$.

4. Let X be a Banach space over \mathbb{K} , and $T \in \mathcal{L}(X; X)$ be given. Recall that a scalar $\lambda \in \mathbb{K}$ is called a *generalized eigenvalue* for T provided that there is a sequence $\{x_n\}_{n=1}^{\infty}$ such that

 $||x_n|| = 1$ for all $n \in \mathbb{N}$ and $(\lambda I - T)x_n \to 0$ as $n \to \infty$.

- (a) Let $T : X \to X$ be a compact linear operator and $\lambda \in \mathbb{K}$ with $\lambda \neq 0$ be given. Show that if λ is a generalized eigenvalue for T then λ is an eigenvalue for T.
- (b) Give an example of a Banach space Y and a compact linear mapping $K: Y \to Y$ such that 0 is a generalized eigenvalue for K, but not an eigenvalue for K.
- 5. (a) Let X and Y be Banach spaces and $T : X \to Y$ be a bounded linear operator. Show that T is bijective if and only if there exist constants c, k > 0 such that

 $||Tx|| \ge c||x||$ for all $x \in X$ and $||T^*y^*|| \ge k||y^*||$ for all $y^* \in Y^*$.

(Here X^*, Y^* are the dual space of X, Y and T^* is the adjoint of T.) You may make use of basic results about operators and their adjoints.

- (b) If X and Y are normed linear spaces (not necessarily complete), does the result of part (a) hold? Prove or give a counterexample.
- 6. Let X and Y be Banach spaces over \mathbb{K} and let $B: X \times Y \to \mathbb{K}$ be a bilinear mapping, i.e.

 $B(\alpha x_1 + \beta x_2, y) = \alpha B(x_1, y) + \beta B(x_2, y) \text{ for all } \alpha, \beta \in \mathbb{K}, \ x_1, x_2 \in X, \ y \in Y,$ $B(x, \alpha y_1 + \beta y_2) = \alpha B(x, y_1) + \beta B(x, y_2) \text{ for all } \alpha, \beta \in \mathbb{K}, \ x \in X, \ y_1, y_2 \in Y.$ Assume that

 $\forall y \in Y, \ B(\cdot, y) : X \to \mathbb{K}$ is continuous

and

 $\forall x \in X, \ B(x, \cdot) : Y \to \mathbb{K} \text{ is continuous.}$

Show that $B: X \times Y \to \mathbb{K}$ is (jointly) continuous.

- 7. Let X be a topological vector space and let C be a convex subset of X.
 - (a) Show that int(C) is convex.
 - (b) Show that cl(C) is convex.
 - (c) If C is closed and $f: X \to \mathbb{K}$ is linear and continuous, does it follow that f[C] is closed? Prove or give a counterexample.

- 8. Let X be a real or complex Hilbert space with inner product (\cdot, \cdot) and associated norm $\|\cdot\|$.
 - (a) Let $y \in X$ and a sequence $\{y_n\}_{n=1}^{\infty}$ in X be given and assume that $y_n \to y$ (weakly) as $n \to \infty$ and that $||y_n|| \to ||y||$ as $n \to \infty$. Show that $y_n \to y$ (strongly) as $n \to \infty$.
 - (b) Let $T \in \mathcal{L}(X; X)$ and a sequence $\{x_n\}_{n=1}^{\infty}$ be given. Assume that T is self-adjoint and that ||T|| = 1. Assume further that $||x_n|| \leq 1$ for all $n \in \mathbb{N}$ and that $||Tx_n|| \to 1$ as $n \to \infty$. Show that

$$||T^2x_n - x_n|| \to 0 \text{ as } n \to \infty.$$