DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

BASIC EXAMINATION: FUNCTIONAL ANALYSIS

September 3, 2015, 4:30pm-6:30pm

Solve all five problems

1. (i) Give the definition of a compact operator between normed spaces.

- (ii) Let X and Y be normed spaces and let $T \in \mathcal{L}(X;Y)$ be a compact operator.
- (a) Prove that range T is separable.
- (b) Prove that the adjoint T^{\star} is also a compact operator.

(c) Suppose that X = Y. What can you say (without proofs) about the spectrum of T, $\sigma(T)$, and the point spectrum, $\sigma_p(T)$? In particular:

- (c)-1 If X is Banach, can there be a sequence $\{\lambda_n\} \subset \mathbb{C}$ in $\sigma(T)$ such that $|\lambda_n| \to \infty$? Justify.
- (c)-2 If X is an infitine dimensional Banach space, can $0 \in \sigma(T)$? Is there an interval of real numbers in $\sigma(T)$? Justify your responses.

2. Let X be a Banach space and let Y be a closed subspace of X. Let $\varepsilon \in [0,1)$. A vector $x \in X \setminus \{0\}$ is said to be ε -perpendicular to Y if

$$||x+y|| \ge (1-\varepsilon)||x|| \quad \text{for all } y \in Y.$$

(i) Prove that if Y is a proper closed subspace of X, then for all $\varepsilon \in (0,1)$ there exists a ε -perpendicular vector.

(ii) Use (i) to prove that the closed unit ball of an infinite dimensional Banach space is not compact.

(iii) Let $L \in X'$ and set Y := Ker(L). Prove that Y admits a 0-perpendicular vector if and only if there exists $x \in \overline{B(0,1)}$ such that

$$||L|| = |L(x)|.$$

3. Let X be a Banach space and let $T \in \mathcal{L}(X; X')$.

(i) Assume that there exists C > 0 such that, for all $x \in X$,

$$\langle Tx, x \rangle_{X' \times X} \ge -C ||Tx||_{X'}^2. \tag{1}$$

Prove that $\operatorname{Ker} T \subset \operatorname{Ker} T^*$ (in the sense that if $x \in \operatorname{Ker} T$ then $J_X(x) \in \operatorname{Ker} T^*$).

(ii) Assume that $\text{Ker}T \subset \text{Ker}T^*$ and that range *T* is closed. Prove that there exists C > 0 such that (1) holds.

OVER

4. (i) Let X be a normed space. State the Banach-Steinhaus Theorem.

(ii) Let $\{L_n\} \subset X'$ and $\{\varepsilon_n\} \subset (0, +\infty)$ be such that $\varepsilon_n \to 0$ and there exists r > 0 such that for every $x \in E$ with ||x|| < r there is $C(x) \in \mathbb{R}$ satisfying

$$L_n(x) \le \varepsilon_n ||L_n|| + C(x) \quad \text{for all } n \in \mathbb{N}.$$

Prove that

$$\sup_{n} ||L_n|| < +\infty.$$

5. Let X be a Hilbert space, let E be a subspace of X, and consider a monotone map $A: E \to X'$, i.e.,

$$\langle A(x) - A(y), x - y \rangle \ge 0$$
 for all $x, y \in E$.

(i) Assume further that A(0) = 0, A is maximal monotone, i.e., $(\mathbb{I} + \tilde{A})(E) = X$, where $\tilde{A} : E \to X$ is defined by

 $\tilde{A}(x) := y(x)$ where y(x) is the unique element of X such that

$$\langle A(x), z \rangle = (z, y(x))$$
 for all $z \in X$.

Why is that there is such an element y(x)? Prove that E is dense in X.

(ii) Assume that E = X and let $x_0 \in X$. Prove that there exist R, C > 0 such that if $x \in X$ is such that $||x - x_0|| < R$ then $||A(x)|| \le C$.

(iii) Assume that E = X, X is separable, and for every $x, y \in X$

 $t \in \mathbb{R} \mapsto \langle A(x+ty), y \rangle$ is continuous at t = 0.

Prove that $A: (X, || \cdot ||) \to (X', \sigma(X', X))$ is continuous.