DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

BASIC EXAMINATION: FUNCTIONAL ANALYSIS

January 20, 2015, 4:30pm-6:30pm

Solve all five problems

1. (a) State the Open Mapping Theorem.

(b) Let $(X, || \cdot ||_X)$ and $(Y, || \cdot ||_Y)$ be Banach spaces, and let $T \in \mathcal{L}(X; Y)$. Prove that if T(X) has a finite complement then T(X) is closed.

2. (a) State the Hahn-Banach Theorem (Second Geometric Form) over \mathbb{R} .

(b) Let X be a reflexive Banach space over \mathbb{R} and let W be a closed linear subspace of X. Let C be a convex subset of X'. Define $\varphi : X \to \mathbb{R}$ by

$$\varphi(x) := \sup_{L \in C} L(x), \qquad x \in X$$

(i) Prove that if $L \in \overline{W^{\perp} + C}$ then

$$\varphi(x) \ge L(x)$$
 for all $x \in W$.

(ii) Conversely, show that if $L \in X'$ is such that

$$\varphi(x) \ge L(x)$$
 for all $x \in W$

then $L \in \overline{W^{\perp} + C}$.

3. (a) Let (X, τ) be a topological vector space. Give the precise definition of the weak topology $\sigma(X, X')$, and describe explicitly a balanced, convex local base of neighborhoods of the origin.

(b) Let $(X, || \cdot ||)$ be an infinite-dimensional Banach space such that X' is separable. Prove that there exists a sequence $\{x_n\}_{n \in \mathbb{N}} \subset X$ such that $||x_n|| = 1$ for all $n \in \mathbb{N}$, and $x_n \to 0$ with respect to the weak tolpology $\sigma(X, X')$.

4. (a) State the Banach-Steinhaus Theorem.

(b) Consider the space C([0, 1]) with the L^p norm, $1 . Let <math>\{a_n\}, \{b_n\}$, be sequences in (0, 1) with $a_n < b_n$ for all $n \in \mathbb{N}$, and let $\{c_n\} \subset \mathbb{R}$. Define $L_n : C([0, 1]) \to \mathbb{R}$ by

$$L_n(f) := c_n \int_{a_n}^{b_n} f(x) \, dx, \quad \text{for } f \in C([0,1]).$$

(i) Prove that for all $n \in \mathbb{N}$

$$||L_n||_{C([0,1])'} = |c_n|(b_n - a_n)^{\frac{1}{p'}}.$$

(ii) Prove that $\sup_{n \in \mathbb{N}} |L_n(f)| < +\infty$ for all $f \in C([0,1])$ if and only if $\{c_n(b_n - a_n)\}$ is a bounded sequence.

- (iii) Find $\{a_n\}, \{b_n\}, \{c_n\}$ such that $\sup_{n \in \mathbb{N}} |L_n(f)| < +\infty$ for every $f \in C([0, 1])$ but $\sup_{n \in \mathbb{N}} ||L_n||_{C([0, 1])'} = +\infty$.
- (iv) Explain why (iii) is not is contradiction with the Banach-Steinhaus Theorem.
 - **5.** Let X be an infinite-dimensional Banach space.
- (i) Let $x_0 \in X$ and $r \in \mathbb{R}$. Prove that the set

$$V := \{ L \in X' : L(x_0) < r \}$$

is open with respect to $\sigma(X', X)$.

- (ii) Prove that $(X', \sigma(X', X))$ is Hausdorff.
- (iii) Prove that if $E \subset X'$ is bounded with respect to the norm $|| \cdot ||_{X'}$, then so is its closure with respect to the $\sigma(X', X)$ topology.
- (iv) Prove that $(X', \sigma(X', X))$ can be written as a countable union of nowhere dense $\sigma(X', X)$ closed sets.
- (v) Prove that $(X', \sigma(X', X))$ is complete.
- (vi) Prove that $(X', \sigma(X', X))$ is not metrizable.