DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

BASIC EXAMINATION: FUNCTIONAL ANALYSIS

September 2, 2014, Wean Hall 7201, 4:30pm-6:30pm

1. (i) State the Closed Graph Theorem.

Let $(X, || \cdot ||_X)$ and $(Y, || \cdot ||_Y)$ be Banach spaces.

(ii) Let $T: X \to Y$ be a linear and continuous operator such that Range(T) is closed. Prove that there exists C > 0 such that for every $y \in T(X)$ there exists $x \in X$ such that

$$y = T(x)$$
 and $||x||_X \le C||y||_Y$.

(iii) Let $T:X\to Y$ be a linear operator such that for every sequence $\{x_n\}\subset X$

$$||x_n||_X \to 0 \Rightarrow T(x_n) \to 0 \text{ in } \sigma(Y, Y').$$

Prove that T is continuous, i.e., $T \in \mathcal{L}(X; Y)$.

2. Prove that if $(X, || \cdot ||)$ is a normed space over \mathbb{R} such that X' is separable, then X is also separable.

3. (i) State and prove the Banach-Steinhaus Theorem for normed spaces.

(ii) Let $(X, || \cdot ||_X)$ be a Banach space over \mathbb{R} and let $L_n, L \in X', n \in \mathbb{N}$, be such that $L_n \stackrel{\star}{\rightharpoonup} L$. Prove that

$$||L||_{X'} \le \liminf_{n \to \infty} ||L_n||_{X'} < +\infty.$$

4. (i) Give the definition of a compact operator between two normed spaces.

(ii) Let $(X, || \cdot ||_X)$ and $(Y, || \cdot ||_Y)$ be normed spaces, and let $T : X \to Y$ be a linear compact operator. Prove that T^* is also compact.

5. Let $(X, (\cdot, \cdot))$ be a Hilbert space and let $T : X \to X$ be a linear, continuous operator such that

$$(Tx, x) \ge 0$$
 for all $x \in X$.

(i) Prove that $\operatorname{Ker}(T) = (\operatorname{Range}(T))^{\perp}$.

(ii) Prove that $\mathbb{I} + tT$ is bijective for all t > 0.