

Discrete Mathematics: Basic Exam

August 25, 2025

Do not flip the page until instructed.

Name: _____

Problem	Points
1	
2	
3	
4	
5	
Total	

Each problem is worth 20 points.

Problem 1**20 points**

Let p be a prime, and let \mathbb{F}_p denote the field with p elements.

- (a) State the Chevalley–Warning theorem (about common zeros of polynomials over \mathbb{F}_p).
- (b) Let $v_1, \dots, v_{3p-1} \in \mathbb{F}_p^2$ with $\sum_{i=1}^{3p-1} v_i = 0$. Show that there is a set $I \subset [3p-1]$ of size $p-1$ or size p with $\sum_{i \in I} v_i = 0$.

Problem 2**20 points**

Let $X \subset \mathbb{R}^2$ be a set of n points. Show that there is a red/blue coloring of the points in X such that in every axis-parallel rectangle R the number of red points deviates from the number of blue points by at most $c \cdot \sqrt{n \log(n)}$ for some universal constant $c > 0$.

Problem 3**20 points**

Let F be a fixed 3-uniform hypergraph on six vertices with four hyperedges. Show that there is a 3-uniform hypergraph H on $[n]$ such that H has at least cn^2 hyperedges for some universal constant $c > 0$, any two distinct hyperedges of H intersect in at most one vertex, and the restriction of H to any six vertices does not contain a copy of F .

Problem 4**20 points**

Let p be a prime, and let k be an integer with $2 < k < \frac{p}{2}$. Recall that a set $A \subset \mathbb{Z}/p\mathbb{Z}$ of integers modulo p is an arithmetic progression of length k and step size $d > 0$ if $A = \{a, a+d, a+2d, \dots, a+(k-1)d\}$. Let P_k denote the number of arithmetic progression of length k and arbitrary step size that a fixed $x_0 \in \mathbb{Z}/p\mathbb{Z}$ is contained in.

- (a) Let \mathcal{F} be a set of arithmetic progressions of length k and fixed step size d in $\mathbb{Z}/p\mathbb{Z}$ that pairwise intersect. Show that the size of \mathcal{F} is at most k .
- (b) Let \mathcal{H} be a set of arithmetic progressions of length k and arbitrary step size in $\mathbb{Z}/p\mathbb{Z}$ that pairwise intersect. Show that the size of \mathcal{H} is at most P_k .

Problem 5**20 points**

Let x_1, x_2, \dots, x_n be real numbers such that $x_i \geq 1$ for all $i \in [n]$. Show that of the 2^n sums $\sum_{i=1}^n \varepsilon_i x_i$ with $\varepsilon_i \in \{-1, +1\}$, at most $\binom{n}{\lceil \frac{n}{2} \rceil}$ lie in the interval $(-1, 1)$.