Discrete Mathematics: Basic Exam

January 25, 2023

Do not flip the page until instructed.

Name: _____

Problem	Points
1	
2	
3	
4	
5	
6	
Total	

Each problem is worth 10 points.

Problem 1

For $B \subseteq \mathbb{Z}$ let $B + B = \{b_1 + b_2 : b_1, b_2 \in B, b_1 \neq b_2\}$. Fix an integer $k \ge 2$. Show that there is an integer N such that for any $C \subseteq \mathbb{Z}$ and any subset $A \subseteq \mathbb{Z}$ with $|A| \ge N$ there is a subset $B \subseteq A$ of cardinality k such that either $B + B \subseteq C$ or B + B is disjoint from C.

Problem 2

Prove that for each $n \in \mathbb{N}$ there is a bipartite graph on 2n vertices, without 4-cycles as subgraphs, and with at least $\Omega(n^{4/3})$ edges.

Problem 3

- (a) State the Cauchy–Davenport theorem.
- (b) Let p be a prime and let $n \in \mathbb{N}$. Let $A_1, \ldots, A_n \subseteq \mathbb{Z}/p$ be nonempty subsets with

$$|A_1| + |A_2| + \dots + |A_n| = p + n - 1.$$

Show that $A_1 + \cdots + A_n = \mathbb{Z}/p$.

Problem 4

Fix an integer $k \ge 2$. Show that for any integer $n > k^{k+1}$ and any k-coloring of $[n] \times [n]$ there is a monochromatic rectangle. (A rectangle is a set of the form $\{(x, y), (x+a, y), (x, y+b), (x+a, y+b)\}$ for a, b > 0.)

Problem 5

Let G be a graph with maximum degree Δ . Let $k \geq 2e\Delta$, and let the vertex set of G be partitioned into $V_1 \sqcup V_2 \sqcup \cdots \sqcup V_q$ with $|V_i| \geq k$ for all $i \in [q]$. Show that there is an independent set with one vertex in each V_i .

Recall that a subset A of vertices is an *independent set* if no two vertices in A are connected by an edge.

Problem 6

10 points

Let $p \geq 3$ be a prime, $m = \frac{p-1}{2}$. Let $d_1, \ldots, d_m \in \mathbb{F}_p \setminus \{0\}$. Show that there exist pairwise distinct $x_1, \ldots, x_m, y_1, \ldots, y_m \in \mathbb{F}_p \setminus \{0\}$ with $x_i - y_i = d_i$ for all $i \in [m]$.

Here \mathbb{F}_p denotes the field with p elements. Use without proof that the coefficient of $\prod_{i=1}^m x_i^{2m-2}$ in $g(x_1, \ldots, x_m) = \prod_{i < j} (x_i - x_j)^4$ is $\frac{(2m)!}{2^m}$. Apply the combinatorial Nullstellensatz to a suitable polynomial (obtained from g by modifying its linear factors) that has the same coefficient of $\prod_{i=1}^m x_i^{2m-2}$ as g.

10 points

10 points

10 points

10 points

10 points