Discrete Mathematics: Basic Exam

January 25, 2023

Do not flip the page until instructed.

Name: \qquad

Problem	Points
1	
2	
3	
4	
5	
6	
Total	

Each problem is worth 10 points.

For $B \subseteq \mathbb{Z}$ let $B \widehat{+} B=\left\{b_{1}+b_{2}: b_{1}, b_{2} \in B, b_{1} \neq b_{2}\right\}$. Fix an integer $k \geq 2$. Show that there is an integer N such that for any $C \subseteq \mathbb{Z}$ and any subset $A \subseteq \mathbb{Z}$ with $|A| \geq N$ there is a subset $B \subseteq A$ of cardinality k such that either $B \widehat{+} B \subseteq C$ or $B \widehat{+} B$ is disjoint from C.

Problem 2

10 points
Prove that for each $n \in \mathbb{N}$ there is a bipartite graph on $2 n$ vertices, without 4-cycles as subgraphs, and with at least $\Omega\left(n^{4 / 3}\right)$ edges.

Problem 3
10 points
(a) State the Cauchy-Davenport theorem.
(b) Let p be a prime and let $n \in \mathbb{N}$. Let $A_{1}, \ldots, A_{n} \subseteq \mathbb{Z} / p$ be nonempty subsets with

$$
\left|A_{1}\right|+\left|A_{2}\right|+\cdots+\left|A_{n}\right|=p+n-1 .
$$

Show that $A_{1}+\cdots+A_{n}=\mathbb{Z} / p$.

Problem 4

10 points
Fix an integer $k \geq 2$. Show that for any integer $n>k^{k+1}$ and any k-coloring of $[n] \times[n]$ there is a monochromatic rectangle. (A rectangle is a set of the form $\{(x, y),(x+a, y),(x, y+b),(x+a, y+b)\}$ for $a, b>0$.)

Problem 5

10 points

Let G be a graph with maximum degree Δ. Let $k \geq 2 e \Delta$, and let the vertex set of G be partitioned into $V_{1} \sqcup V_{2} \sqcup \cdots \sqcup V_{q}$ with $\left|V_{i}\right| \geq k$ for all $i \in[q]$. Show that there is an independent set with one vertex in each V_{i}.

Recall that a subset A of vertices is an independent set if no two vertices in A are connected by an edge.

Problem 6

Let $p \geq 3$ be a prime, $m=\frac{p-1}{2}$. Let $d_{1}, \ldots, d_{m} \in \mathbb{F}_{p} \backslash\{0\}$. Show that there exist pairwise distinct $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m} \in \mathbb{F}_{p} \backslash\{0\}$ with $x_{i}-y_{i}=d_{i}$ for all $i \in[m]$.

Here \mathbb{F}_{p} denotes the field with p elements. Use without proof that the coefficient of $\prod_{i=1}^{m} x_{i}^{2 m-2}$ in $g\left(x_{1}, \ldots, x_{m}\right)=\prod_{i<j}\left(x_{i}-x_{j}\right)^{4}$ is $\frac{(2 m)!}{2^{m}}$. Apply the combinatorial Nullstellensatz to a suitable polynomial (obtained from g by modifying its linear factors) that has the same coefficient of $\prod_{i=1}^{m} x_{i}^{2 m-2}$ as g.

