21-701 Qualifying Exam

January 16, 2020

Name:

This exam consists of five problems and six pages, including this front page. You have three hours.
Good Luck!

Problem \#	Max pts	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

Let $p \in(0,1]$ be constant. Show that with a probability approaching 1 the graph $G(n, p)$ has the property that every pair of its vertices has a common neighbor, i.e., a vertex, adjacent to both of them.

Problem 2

Show that the probability that $G\left(n, \frac{1}{2}\right)$ has a bipartite subgraph with more than $\frac{1}{8} n^{2}+n^{3 / 2}$ edges tends to zero.

Hint: Consider all possible bipartitions of the vertex set.

Problem 3

Let $c:\binom{\mathbb{N}}{2} \rightarrow \mathbb{N}$ be a coloring of pairs of natural numbers by natural numbers. Further assume that there is an $M \in \mathbb{N}$ such that at most M pairs receive the same color, that is,

$$
\left|\left\{x \in\binom{\mathbb{N}}{2}: c(x)=i\right\}\right| \leq M
$$

for every $i \in \mathbb{N}$. Show that there is an infinite $H \subset \mathbb{N}$ such that the elements of $\binom{H}{2}$ receive pairwise distinct colors by c.

Hint: Totally order $\binom{\mathbb{N}}{2}$ in an arbitrary way and apply Ramsey's theorem to a suitably defined coloring.

Problem 4

Let $c: \mathbb{N} \rightarrow[r]$ be an r-coloring of \mathbb{N}. Show that there is a 3-term arithmetic progression

$$
\{a, a+d, a+2 d\}
$$

with $d \neq 0$, which is monochromatic with respect to c, and such that each of its three elements has an even number of not necessarily distinct prime divisors. (For example, $124=2^{2} \cdot 31$ has an odd number of not necessarily distinct prime divisors.)

Problem 5

Given a set of lines in the plane, a point is called r-rich if it is contained in at least r of the lines. Show that for r sufficiently large the number of r-rich points among any L lines in the plane is $O\left(L^{2} / r^{3}+L / r\right)$. (This is true for any $r \geq 2$, but the sufficiently large assumption might simplify the proof.)

