Discrete Mathematics Qualifying Exam 2019

Do not flip the page until instructed.

Name: _____

Problem	Points
1	
2	
3	
4	
Total	

Each problem is worth 10 points.

No books, notes, or other external help is permitted.

This is a **180** minute long test.

1. A game is played between Alice and Bob. At start the elements of $[n] = \{1, 2, ..., n\}$ are unclaimed. Each turn Alice chooses a number d, and Bob claims a subset of $S \subset [n]$ that contains no two integers whose difference is d. The game is over when all elements of [n] are claimed by Bob.

Bob's goal is to finish the game quickly, whereas Alice's goal is to prolong the game.

- (a) (5 points) Show that Bob can finish the game in $O(\log n)$ steps.
- (b) (5 points) Show that Alice can make the game last at least $\Omega(\log \log n)$ steps.

2. (10 points) Suppose $\{a_n\}$ is a sequence that satisfies a linear recurrence, i.e., a relation of the form $a_n = \sum_{k=1}^d \gamma_k a_{n-k}$ for some constants $\gamma_1, \ldots, \gamma_d$. Let $b_n = a_{2n}$. Prove that b_n also satisfies a linear recurrence.

3. (10 points) Show that for each $k \in \mathbb{N}$ there is an $m \in \mathbb{N}$ such that for every set S of m integers there is a k-coloring of Z such that every translate of S meets every color class.

- 4. (a) (5 points) State Szemerédi's regularity lemma and the triangle removal lemma.
 - (b) (5 points) Assuming the regularity lemma, prove the triangle removal lemma.