21-632: Basic Exam

Thursday, January 20, 2022, 6:30-9:30pm

1	2	3	4	5	total
10 pts	50 pts				

Please read the following instructions carefully:

- You may not use any books, notes, or calculators.
- Switch off any electronic devices and put them in your bag (moblie phones, tablets, etc.)
- Exam duration: 180 minutes
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- You may use theorems that we proved in class but you need to clearly state why the assumptions to apply these are satisfied and the results they imply.
- Follow any additional instructions as provided in Po-Shen Loh's email.

Good luck!

Notation

- Unless otherwise stated, $|\cdot|$ denotes the Euclidean vector norm in $\mathbb{R}^{n}(n \in \mathbb{N})$: For a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n},|x|:=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$.
- For a function $u=u(t)$ depending on a variable $t \in \mathbb{R}$ (or a subset of \mathbb{R}), $u^{\prime}(t)$ denotes the derivative with respect to that variable

$$
u^{\prime}(t)=\frac{d u(t)}{d t}
$$

- For a function $u=u(t, x)=u\left(t, x_{1}, \ldots, x_{n}\right)\left(x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\right)$ depending on several variables, its partial derivatives with respect to the variables are denoted by

$$
\frac{\partial u}{\partial t}(t, x)=\partial_{t} u(t, x)=u_{t}(t, x), \quad \frac{\partial u}{\partial x_{j}}(t, x)=\partial_{x_{j}} u(t, x)=u_{x_{j}}(t, x), \quad j=1, \ldots, n
$$

We use powers to indicate we apply several partial derivatives, e.g., $\frac{\partial^{2} u}{\partial t^{2}}=\partial_{t}^{2} u=\partial_{t} \partial_{t} u$ or $\frac{\partial^{3} u}{\partial x_{j}^{3}}=\partial_{x_{j}}^{3}=\partial_{x_{j}} \partial_{x_{j}} \partial_{x_{j}}$.

- For a scalar valued function $u=u(x)$ (depending on space) or a function $u=u(t, x)$ (depending on space and time), we denote the gradient with respect to the spatial variables by $D u=\left(\partial_{x_{1}} u, \ldots, \partial_{x_{n}} u\right)$ and the Laplace operator

$$
\Delta u=\sum_{j=1}^{n} \partial_{x_{j}}^{2} u
$$

- For a set $U \subset \mathbb{R}^{n}, n, m \in \mathbb{N}$ we denote

$$
\begin{aligned}
& C^{0}\left(U ; \mathbb{R}^{m}\right)=\left\{u: U \rightarrow \mathbb{R}^{m} \mid u \text { is continuous }\right\} \\
& C^{k}\left(U ; \mathbb{R}^{m}\right)=\left\{u: U \rightarrow \mathbb{R}^{m} \mid u \text { is } k \text { times continuously differentiable }\right\} \\
& C^{\infty}\left(U ; \mathbb{R}^{m}\right)=\left\{u: U \rightarrow \mathbb{R}^{m} \mid u \text { is infintively often continuously differentiable }\right\} \\
& C_{c}^{k}\left(U ; \mathbb{R}^{m}\right)=\left\{u: U \rightarrow \mathbb{R}^{m} \mid u \in C^{k}\left(U, \mathbb{R}^{m}\right) \text { and compactly supported in } U\right\} \\
& C_{c}^{\infty}\left(U ; \mathbb{R}^{m}\right)=\left\{u: U \rightarrow \mathbb{R}^{m} \mid u \in C^{\infty}\left(U, \mathbb{R}^{m}\right) \text { and compactly supported in } U\right\}
\end{aligned}
$$

We say f is smooth if $f \in C^{\infty}\left(U ; \mathbb{R}^{m}\right)$ and write $C^{k}(U)=C^{k}(U ; \mathbb{R})$ etc.

- A function $f: U \rightarrow \mathbb{R}^{m}\left(U \subset \mathbb{R}^{n}\right.$ a set, $\left.n, m \in \mathbb{N}\right)$ is Lipschitz continuous if there exists a positive real constant K such that for all $x_{1}, x_{2} \in U$,

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq K\left|x_{1}-x_{2}\right|
$$

Problem 1: ODEs

Consider the autonomous ODE

$$
\begin{align*}
& u^{\prime}(t)=f(u(t)), \quad t \in I \subset \mathbb{R}, \tag{1}\\
& u\left(t_{0}\right)=u_{0}, \quad t_{0} \in I
\end{align*}
$$

$u: I \mapsto \mathbb{R}^{n}, n \in \mathbb{N}$, where I is an interval.
a) Find an example of the function f (and initial condition u_{0}) for which the maximal interval of existence for the solution u of (1) is bounded.
b) Find an example of a function f (and initial condition u_{0}) for which the solution u of (1) is not unique.
c) Describe conditions on f (and initial conditions u_{0}) so that the solution u is unique and exists for all time.

For each part, justify your answer.

Problem 2: Elliptic equations

Given $0<R_{1}<R(t)$ let $U(t)=B_{R(t)}(0) \backslash \bar{B}_{R_{1}}(0) \subset \mathbb{R}^{3}$ and let $u(t, \cdot) \in C^{2}(\overline{U(t)})$ solve

$$
\begin{align*}
& \Delta u(t, x)=0, \quad R_{1}<r<R(t), \quad r=|x| \\
& u(t, x)=1, \quad|x|=R_{1} \tag{3}\\
& u(t, x)=0, \quad|x|=R(t)
\end{align*}
$$

In addition, assume that $R(t)$ satisfies

$$
\frac{d R}{d t}=-\frac{\partial u}{\partial r}(r=R)
$$

with initial condition $R(0)=R_{0}$ where $R_{0}>R_{1}$.
a) Find the solution $u(t, x)$.
b) Find an ODE for the outer radius $R(t)$ (explicitly expressed in terms of $R(t)$).

Problem 3: Parabolic equations

Let $0<L<\infty$.
a) Show that for functions $u \in C^{1}([0, L])$ with $\int_{0}^{L} u(x) d x=0$,

$$
\int_{0}^{L}|u(x)|^{2} d x \leq C(L) \int_{0}^{L}\left|u^{\prime}(x)\right|^{2} d x
$$

where $C(L)>0$ depends on L but not on u.
Hint: Use the fundamental theorem of calculus.
b) Let $0<p(x) \in C^{\infty}([0, L])$ and $\varphi \in C^{\infty}([0, L])$. Consider the solution $u \in C^{2}([0, \infty) \times[0, L])$ of the equation

$$
\begin{aligned}
& u_{t}=\partial_{x}\left(p(x) \partial_{x} u\right), \quad x \in(0, L), t>0, \\
& u(0, x)=\varphi(x), \quad x \in(0, L) \\
& \partial_{x} u(t, 0)=\partial_{x} u(t, L)=0, \quad t>0 .
\end{aligned}
$$

What is the limit of $u(t, x)$ as $t \rightarrow \infty$? Justify your answer.

Problem 4: Wave equation

Let $u=u(t, x) \in C^{2}([0, \infty) \times \mathbb{R} ; \mathbb{R})$ solve

$$
\begin{aligned}
& u_{t t}+2 u_{t x}-u_{x x}+a(t, x) u_{x}=0, \quad t>0, x \in \mathbb{R} \\
& u(0, x)=f(x), \quad u_{t}(0, x)=g(x), \quad x \in \mathbb{R}
\end{aligned}
$$

where f and g are smooth and compactly supported functions and a is a smooth and bounded function. Show that C^{2}-solutions of this problem are unique.

Problem 5: Characteristics

a) Solve $e^{x} u_{x}(x, y)+u_{y}(x, y)=u(x, y)$ with $u(x, 0)=g(x)$.
b) Solve $x^{2} u_{x}(x, y)+y^{2} u_{y}(x, y)=(u(x, y))^{2}$ with $u(x, y)=1$ for $y=2 x$.

