21-632: Basic Exam

Thursday, January 20, 2022, 6:30 - 9:30pm

1	2	3	4	5	total
10 pts	$10 \mathrm{~pts}$	$10 \mathrm{~pts}$	$10 \ \mathrm{pts}$	10 pts	50 pts

Please read the following instructions carefully:

- You may not use any books, notes, or calculators.
- Switch off any electronic devices and put them in your bag (moblie phones, tablets, etc.)
- Exam duration: 180 minutes
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- You may use theorems that we proved in class but you need to clearly state why the assumptions to apply these are satisfied and the results they imply.
- Follow any additional instructions as provided in Po-Shen Loh's email.

Good luck!

Notation

- Unless otherwise stated, $|\cdot|$ denotes the Euclidean vector norm in \mathbb{R}^n $(n \in \mathbb{N})$: For a vector $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $|x| := (x_1^2 + \cdots + x_n^2)^{1/2}$.
- For a function u = u(t) depending on a variable $t \in \mathbb{R}$ (or a subset of \mathbb{R}), u'(t) denotes the derivative with respect to that variable

$$u'(t) = \frac{du(t)}{dt}$$

• For a function $u = u(t, x) = u(t, x_1, ..., x_n)$ $(x = (x_1, ..., x_n) \in \mathbb{R}^n)$ depending on several variables, its partial derivatives with respect to the variables are denoted by

$$\frac{\partial u}{\partial t}(t,x) = \partial_t u(t,x) = u_t(t,x), \quad \frac{\partial u}{\partial x_j}(t,x) = \partial_{x_j} u(t,x) = u_{x_j}(t,x), \quad j = 1, \dots, n.$$

We use powers to indicate we apply several partial derivatives, e.g., $\frac{\partial^2 u}{\partial t^2} = \partial_t^2 u = \partial_t \partial_t u$ or $\frac{\partial^3 u}{\partial x_i^3} = \partial_{x_j}^3 = \partial_{x_j} \partial_{x_j} \partial_{x_j}$.

• For a scalar valued function u = u(x) (depending on space) or a function u = u(t, x) (depending on space and time), we denote the gradient with respect to the spatial variables by $Du = (\partial_{x_1}u, \ldots, \partial_{x_n}u)$ and the Laplace operator

$$\Delta u = \sum_{j=1}^{n} \partial_{x_j}^2 u$$

• For a set $U \subset \mathbb{R}^n$, $n, m \in \mathbb{N}$ we denote

$$\begin{split} C^0(U;\mathbb{R}^m) &= \{u: U \to \mathbb{R}^m \mid u \text{ is continuous}\}\\ C^k(U;\mathbb{R}^m) &= \{u: U \to \mathbb{R}^m \mid u \text{ is } k \text{ times continuously differentiable}\}\\ C^\infty(U;\mathbb{R}^m) &= \{u: U \to \mathbb{R}^m \mid u \text{ is infinitively often continuously differentiable}\}\\ C^k_c(U;\mathbb{R}^m) &= \{u: U \to \mathbb{R}^m \mid u \in C^k(U,\mathbb{R}^m) \text{ and compactly supported in } U\}\\ C^\infty_c(U;\mathbb{R}^m) &= \{u: U \to \mathbb{R}^m \mid u \in C^\infty(U,\mathbb{R}^m) \text{ and compactly supported in } U\} \end{split}$$

We say f is smooth if $f \in C^{\infty}(U; \mathbb{R}^m)$ and write $C^k(U) = C^k(U; \mathbb{R})$ etc.

• A function $f: U \to \mathbb{R}^m$ ($U \subset \mathbb{R}^n$ a set, $n, m \in \mathbb{N}$) is Lipschitz continuous if there exists a positive real constant K such that for all $x_1, x_2 \in U$,

$$|f(x_1) - f(x_2)| \le K|x_1 - x_2|.$$

Problem 1: ODEs

Consider the autonomous ODE

$$u'(t) = f(u(t)), \quad t \in I \subset \mathbb{R},$$

$$u(t_0) = u_0, \quad t_0 \in I,$$
(1)

- $u: I \mapsto \mathbb{R}^n, n \in \mathbb{N}$, where I is an interval.
- a) Find an example of the function f (and initial condition u_0) for which the maximal interval of existence for the solution u of (1) is bounded.
- b) Find an example of a function f (and initial condition u_0) for which the solution u of (1) is not unique.
- c) Describe conditions on f (and initial conditions u_0) so that the solution u is unique and exists for all time.

For each part, justify your answer.

Problem 2: Elliptic equations

Given $0 < R_1 < R(t)$ let $U(t) = B_{R(t)}(0) \setminus \overline{B}_{R_1}(0) \subset \mathbb{R}^3$ and let $u(t, \cdot) \in C^2(\overline{U(t)})$ solve

$$\Delta u(t, x) = 0, \quad R_1 < r < R(t), \quad r = |x|,$$

$$u(t, x) = 1, \quad |x| = R_1,$$

$$u(t, x) = 0, \quad |x| = R(t),$$

(3)

In addition, assume that R(t) satisfies

$$\frac{dR}{dt} = -\frac{\partial u}{\partial r}(r = R)$$

with initial condition $R(0) = R_0$ where $R_0 > R_1$.

- **a)** Find the solution u(t, x).
- **b)** Find an ODE for the outer radius R(t) (explicitly expressed in terms of R(t)).

Problem 3: Parabolic equations

Let $0 < L < \infty$.

a) Show that for functions $u \in C^1([0, L])$ with $\int_0^L u(x) dx = 0$,

$$\int_0^L |u(x)|^2 dx \le C(L) \int_0^L |u'(x)|^2 dx,$$

where C(L) > 0 depends on L but not on u.

Hint: Use the fundamental theorem of calculus.

Thursday, January 20, 2022, 6:30 - 9:30pm

b) Let $0 < p(x) \in C^{\infty}([0, L])$ and $\varphi \in C^{\infty}([0, L])$. Consider the solution $u \in C^{2}([0, \infty) \times [0, L])$ of the equation

$$u_t = \partial_x(p(x)\partial_x u), \quad x \in (0, L), \ t > 0,$$

$$u(0, x) = \varphi(x), \quad x \in (0, L),$$

$$\partial_x u(t, 0) = \partial_x u(t, L) = 0, \quad t > 0.$$

What is the limit of u(t, x) as $t \to \infty$? Justify your answer.

Problem 4: Wave equation

Let $u = u(t, x) \in C^2([0, \infty) \times \mathbb{R}; \mathbb{R})$ solve

$$u_{tt} + 2u_{tx} - u_{xx} + a(t, x)u_x = 0, \quad t > 0, \ x \in \mathbb{R}$$
$$u(0, x) = f(x), \quad u_t(0, x) = g(x), \quad x \in \mathbb{R},$$

where f and g are smooth and compactly supported functions and a is a smooth and bounded function. Show that C^2 -solutions of this problem are unique.

Problem 5: Characteristics

- a) Solve $e^{x}u_{x}(x,y) + u_{y}(x,y) = u(x,y)$ with u(x,0) = g(x).
- **b)** Solve $x^2u_x(x,y) + y^2u_y(x,y) = (u(x,y))^2$ with u(x,y) = 1 for y = 2x.