- This test is closed book: No books, notes, or access to any other relevant materials (including Internet consultation) are permitted.
- You have 3 hours. The exam has a total of 5 questions and 100 points (20 each).
- You may use without proof standard results from the syllabus (not from homework) which are independent of the question asked, unless explicitly instructed otherwise. You must, however, clearly state the result you are using.

Problem 1 : Assuming that $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is harmonic, prove that the vector field

$$
v(x)=(u+2 x \cdot D u) D u-x|D u|^{2}, \quad x \in \mathbb{R}^{3}
$$

has zero divergence, then use this to prove that for every $r>0$,

$$
\int_{B(0, r)}|D u|^{2} d x \geq r \int_{\partial B(0, r)}|D u|^{2} d S
$$

Finally, deduce from this that the function

$$
r \mapsto \frac{1}{r} \int_{B(0, r)}|D u|^{2} d x, \quad r>0
$$

is non-decreasing. (Notation: $D u$ is the gradient of u, and $B(0, r)=\left\{x \in \mathbb{R}^{n}:|x| \leq r\right\}$.)

Problem 2 : Let U be a bounded open set in \mathbb{R}^{n} with smooth boundary, and let $u(x, t)$ be a smooth solution of

$$
\begin{aligned}
u_{t}-\Delta u+c(x, t) u=0, & x \in U, t>0 \\
u(x, t)=0, & x \in \partial U, t>0 \\
u(x, t)=g(x), & x \in U, t=0
\end{aligned}
$$

Assume $c(x, t) \geq \gamma>0$ for all $x \in U, t \geq 0$. Prove that for some constant $C>0$,

$$
u(x, t) \leq C e^{-\gamma t} \quad \text { for all } x \in U, t>0
$$

Problem 3 : Suppose $0<s<1$ and $\phi, \psi: \mathbb{R} \rightarrow \mathbb{R}$ are C^{2}. Find a solution formula for the solution to the following boundary value problem for the wave equation in \mathbb{R}^{2} :

$$
\begin{aligned}
u_{t t} & =u_{x x}, & t>s x \\
u(x, t) & =\phi(x), & t=s x \\
u_{t}(x, t) & =\psi(x), & t=s x
\end{aligned}
$$

analogous to d'Alembert's formula for the case $s=0$. Explicitly determine the solution $u(x, t)$ in the case $\phi(x)=0, \psi(x)=\sin x$.

EXAM CONTINUES ON NEXT PAGE

Problem 4 : Suppose $u: \mathbb{R} \times[0, T] \rightarrow \mathbb{R}$ is a smooth solution of $u_{t}+u u_{x}=0$ that is periodic in x with period L, i.e., $u(x+L, t)=u(x, t)$. Show that

$$
\max _{x} u(x, 0)-\min _{x} u(x, 0) \leq \frac{L}{T}
$$

Problem 5 : Consider a scalar conservation law

$$
u_{t}+f_{\varepsilon}(u)_{x}=0, \quad x \in \mathbb{R}, t>0
$$

with convex flux function given by $f_{\varepsilon}(u)=\sqrt{u^{2}+\varepsilon}$ where $\varepsilon>0$, and initial data

$$
u(x, 0)= \begin{cases}0, & x<0 \\ 1, & x>0\end{cases}
$$

(i) Find a discontinuous weak solution of this problem, and determine whether the Lax entropy condition holds at points of discontinuity.
(ii) Show that a continuous solution $u^{\varepsilon}(x, t)$ exists in the form of a centered rarefaction wave for $t>0$. Find $u^{0}(x, t)=\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}(x, t)$ and show that u^{0} is a weak solution of

$$
u_{t}+|u|_{x}=0, \quad x \in \mathbb{R}, t>0
$$

