• This test is **closed book**: No books, notes, or access to any other relevant materials (including Internet consultation) are permitted.

• You have 3 hours. The exam has a total of 5 questions and 100 points (20 each).

• You may use without proof *standard* results from the syllabus (not from homework) which are independent of the question asked, unless explicitly instructed otherwise. You must, however, clearly **state** the result you are using.

Problem 1 : Assuming that $u: \mathbb{R}^3 \to \mathbb{R}$ is harmonic, prove that the vector field

$$v(x) = (u + 2x \cdot Du)Du - x|Du|^2, \qquad x \in \mathbb{R}^3,$$

has zero divergence, then use this to prove that for every r > 0,

$$\int_{B(0,r)} |Du|^2 \, dx \ge r \int_{\partial B(0,r)} |Du|^2 \, dS \, .$$

Finally, deduce from this that the function

$$r\mapsto \frac{1}{r}\int_{B(0,r)}|Du|^2\,dx\,,\qquad r>0,$$

is non-decreasing. (Notation: Du is the gradient of u, and $B(0,r) = \{x \in \mathbb{R}^n : |x| \le r\}$.)

Problem 2 : Let U be a bounded open set in \mathbb{R}^n with smooth boundary, and let u(x,t) be a smooth solution of

$$\begin{split} u_t - \Delta u + c(x,t)u &= 0, & x \in U, \ t > 0, \\ u(x,t) &= 0, & x \in \partial U, \ t > 0, \\ u(x,t) &= g(x), & x \in U, \ t = 0. \end{split}$$

Assume $c(x,t) \ge \gamma > 0$ for all $x \in U, t \ge 0$. Prove that for some constant C > 0,

$$u(x,t) \le Ce^{-\gamma t}$$
 for all $x \in U, t > 0$.

Problem 3 : Suppose 0 < s < 1 and $\phi, \psi : \mathbb{R} \to \mathbb{R}$ are C^2 . Find a solution formula for the solution to the following boundary value problem for the wave equation in \mathbb{R}^2 :

$$u_{tt} = u_{xx}, \qquad t > sx,$$

$$u(x,t) = \phi(x), \qquad t = sx,$$

$$u_t(x,t) = \psi(x), \qquad t = sx.$$

analogous to d'Alembert's formula for the case s = 0. Explicitly determine the solution u(x,t) in the case $\phi(x) = 0$, $\psi(x) = \sin x$.

EXAM CONTINUES ON NEXT PAGE

Problem 4 : Suppose $u: \mathbb{R} \times [0,T] \to \mathbb{R}$ is a smooth solution of $u_t + uu_x = 0$ that is periodic in x with period L, i.e., u(x + L, t) = u(x, t). Show that

$$\max_{x} u(x,0) - \min_{x} u(x,0) \le \frac{L}{T}.$$

Problem 5 : Consider a scalar conservation law

$$u_t + f_{\varepsilon}(u)_x = 0, \qquad x \in \mathbb{R}, \ t > 0,$$

with convex flux function given by $f_{\varepsilon}(u) = \sqrt{u^2 + \varepsilon}$ where $\varepsilon > 0$, and initial data

$$u(x,0) = \begin{cases} 0, & x < 0, \\ 1, & x > 0. \end{cases}$$

(i) Find a discontinuous weak solution of this problem, and determine whether the Lax entropy condition holds at points of discontinuity.

(ii) Show that a continuous solution $u^{\varepsilon}(x,t)$ exists in the form of a centered rarefaction wave for t > 0. Find $u^{0}(x,t) = \lim_{\varepsilon \to 0} u^{\varepsilon}(x,t)$ and show that u^{0} is a weak solution of

$$u_t + |u|_x = 0, \qquad x \in \mathbb{R}, \ t > 0.$$