- This test is closed book: No books, notes, or access to any other relevant materials (including Internet consultation) are permitted.
- You have 3 hours. The exam has a total of 5 questions and 100 points (20 each).
- You may use without proof standard results from the syllabus (not from homework) which are independent of the question asked, unless explicitly instructed otherwise. You must, however, clearly state the result you are using.

Problem $1:$ Suppose $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is harmonic in the unit ball $B(0,1)$. For $a, c \in(0,1)$ let

$$
G(a, c)=\int_{\partial B(0,1)} u(a z) u(c z) d S(z)
$$

Show that $G(a, c)=G(b, b)$ where $b^{2}=a c$. (Hint: Show $G\left(a, b^{2} / a\right)$ is independent of a.)

Problem 2 : Suppose $U \subset \mathbb{R}^{n}$ is a bounded domain with smooth boundary. Show that the initial boundary value problem

$$
\begin{aligned}
u_{t} & =\Delta u+\int_{U} u^{2} d x \quad \text { in } U \text { for } t>0 \\
u & =0 \quad \text { on } \partial U \text { for } t>0 \\
u(x, 0) & =g(x) \quad \text { for } x \in U,
\end{aligned}
$$

may have at most one solution $u \in C^{2}(\bar{U} \times[0, T])$, for any $T>0$.

Problem 3 : Consider this initial value problem for the inhomogeneous wave equation:

$$
\begin{gathered}
u_{t t}-u_{x x}=f(x, t), \quad-\infty<x<\infty, \quad t>0 \\
u(x, 0)=0, \quad u_{t}(x, 0)=0 \quad-\infty<x<\infty
\end{gathered}
$$

where f is smooth. Let $L>0$ and $T>0$, and suppose

$$
\begin{aligned}
f(x, t+T) & =f(x, t) & & \text { for all } x \in \mathbb{R} \text { and } t>0, \text { and } \\
f(x, t) & =0 & & \text { whenever }|x|>L, \text { for all } t>0
\end{aligned}
$$

(a) Use Duhamel's principle and d'Alembert's formula to derive a solution formula for u.
(b) Show that $u_{t}+u_{x}=0$ when $x=L$, for all $t>0$.
(c) Show $u_{t}(x, t+T)=u_{t}(x, t)$ for all $x \geq 0$, if t is sufficiently large (depending on x).

Problem 4 : Find a solution of

$$
\left(u_{x}-y\right)^{2}+u_{y}^{2}-1=0
$$

which is smooth and positive in the first quadrant of the unit disk in \mathbb{R}^{2} and which vanishes for $y=0$. Show that the (projected) characteristics are circular arcs.

Problem 5 : Consider the scalar conservation law

$$
u_{t}+\left(u^{3}-u\right)_{x}=0, \quad-\infty<x<\infty, \quad t>0 .
$$

(a) Find all constants $a \in \mathbb{R}$ such that the initial value problem has a simple shock solution

$$
u(x, t)= \begin{cases}u_{-} & x<s t \\ u_{+} & x>s t\end{cases}
$$

satisfying the Lax entropy condition, with

$$
u(x, 0)= \begin{cases}1 & x<0 \\ a & x>0\end{cases}
$$

(b) Find all constants $b \in \mathbb{R}$ such that the initial value problem has a continuous centered rarefaction wave weak solution, with

$$
u(x, 0)= \begin{cases}b & x<0 \\ -1 & x>0\end{cases}
$$

(c) For the initial data

$$
u(x, 0)= \begin{cases}1 & x<0 \\ -1 & x>0\end{cases}
$$

describe two different weak solutions, one of which consists of a combination of a centered rarefaction wave and a simple shock.

