
Differential Equations: Basic Exam

Tuesday, September 8, 2020, 6:30-9:30pm

1 2 3 4 5 total

10 pts 10 pts 10 pts 10 pts 10 pts 50 pts

Please read the following instructions carefully:

• Write your name on all sheets.

• You may not use any books, notes, or calculators.

• Switch off any electronic devices and put them in your bag (moblie phones, tablets, etc.)

• Exam duration: 180 minutes

• Solve all problems. Answer all problems after carefully reading them. Start every problem
on a new page.

• Show all your work and explain everything you write.

• Do not use pencils but rather pens.

Good luck!



Differential Equations : Basic Exam

Notation

• Unless otherwise stated, | · | denotes the Euclidean vector norm in Rn (n ∈ N): For a vector
x = (x1, . . . , xn) ∈ Rn, |x| := (x21 + · · ·+ x2n)1/2.

• R≥0 := {x ∈ R |x ≥ 0}

• For a function y = y(t) depending on a variable t ∈ R (or a subset of R), y′(t) denotes the
derivative with respect to that variable

y′(t) =
dy(t)

dt
.

• For a function u = u(t, x) = u(t, x1, . . . , xn) (x = (x1, . . . , xn) ∈ Rn) depending on several
variables, its partial derivatives with respect to the variables are denoted by

∂u

∂t
(t, x) = ∂tu(t, x) = ut(t, x),

∂u

∂xj
(t, x) = ∂xju(t, x) = uxj (t, x), j = 1, . . . , n.

We use powers to indicate we apply several partial derivatives, e.g., ∂2u
∂t2 = ∂2t u = ∂t∂tu or

∂3u
∂x3

j
= ∂3xj

= ∂xj
∂xj

∂xj
.

• For a scalar valued function u = u(x) (depending on space) or a function u = u(t, x) (de-
pending on space and time), we denote the gradient with respect to the spatial variables by
Du = (∂x1

u, . . . , ∂xn
u) and the Laplace operator

∆u =

n∑
j=1

∂2xj
u.

• For a set U ⊂ Rn, n,m ∈ N we denote

C0(U ;Rm) = {u : U → Rm |u is continuous}
Ck(U ;Rm) = {u : U → Rm |u is k times continuously differentiable}
C∞(U ;Rm) = {u : U → Rm |u is infintively often continuously differentiable}
Ck

c (U ;Rm) = {u : U → Rm |u ∈ Ck(U,Rm) and compactly supported in U}
C∞c (U ;Rm) = {u : U → Rm |u ∈ C∞(U,Rm) and compactly supported in U}

We say f is smooth if f ∈ C∞(U ;Rm) and write Ck(U) = Ck(U ;R) etc.

• A function f : U → Rm (U ⊂ Rn a set, n,m ∈ N) is Lipschitz continuous if there exists a
positive real constant K such that for all x1, x2 ∈ U ,

|f(x1)− f(x2)| ≤ K|x1 − x2|.
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Problem 1: ODEs

Consider an ODE y′ = f(t, y(t)) where f is continuous for all (t, y) ∈ R2. Assume an initial value
problem

y′ = f(t, y(t)), y(0) = y0,

has two distinct solutions on [0, T ] for some T > 0. In particular, assume that the two solutions are
bounded and take different values at t = T . Show that the ODE has infinitely many such solutions.

Problem 2: Elliptic equations

Let U ⊂ Rn be a bounded smooth domain of Rn, n ≥ 1.

a) Let Br(x) = {y ∈ Rn | |x − y| < r} the ball with radius r > 0 in Rn and ∂Br(x) its boundary.
Prove that for any φ ∈ C2(U),

rn−1
∂

∂r

(
r1−n

ˆ
∂Br(x)

φ(y)dS(y)

)
=

ˆ
Br(x)

∆φ(y)dy, for all Br(x) ⊂ U.

b) Now let f : U → R a continuous positive function and consider the PDE

∆(u2) = f, x ∈ U,
u = 0, x ∈ ∂U.

Does a solution u ∈ C2(U) ∩ C0(U) of this PDE exist?

Problem 3: Parabolic equations

Suppose that u ∈ C2([0,∞)× [0, 1]) is a solution of the initial boundary value problem

ut = uxx + cu2, t > 0, 0 < x < 1,

u(0, x) = u0(x), 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1) = 0, t > 0,

where c is a positive constant and u0 ∈ C2([0, 1]) with u0(0) = u0(1) = 0.

a) Show that

sup
x∈[0,1]

|u(t, x)|2 ≤
ˆ 1

0

|ux(t, x)|2dx.

b) Show that

1

2

d

dt

ˆ 1

0

|u(t, x)|2dx ≤ −
ˆ 1

0

|ux(t, x)|2dx

(
1− c

(ˆ 1

0

|u(t, x)|2dx
)1/2

)
.

c) If the initial data u0 satisfies
´ 1
0
|u0(x)|2dx < 1/c2, show that u satisfies

´ 1
0
|u(t, x)|2dx < 1/c2

for all times.
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d) If the boundary condition is changed to ∂xu(t, x) = 0 at x = 0 and x = 1 (and same for the
initial data), find a counterexample, i.e., find an initial data u0 for which the solution blows up
in finite time.

Problem 4: Wave equation

Find a closed form (similar to D’Alembert’s formula) of the solution u(t, x) of

utt − c2uxx = 0, for t, x > 0,

u(0, x) = g(x), for x > 0,

ut(0, x) = h(x), for x > 0,

ux(t, 0) = α(t), for t ≥ 0,

where g, h, α ∈ C2 satisfy α(0) = g′(0) and α′(0) = h′(0).

Problem 5: Scalar conservation laws

Consider the conservation law

ut + u3ux = 0, u(0, x) = u0(x). (3)

for (t, x) ∈ R≥0 × R and initial data u0.

a) Define the characteristics for (3).

b) For the initial data

u0(x) =

{
−2, x < 0,

1, x ≥ 0.

find two different weak solutions of the above PDE.

c) What is an entropy condition for the above PDE?

d) Find the entropy solution for the given initial data.
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