Differential Equations: Basic Exam

Tuesday, September 8, 2020, 6:30-9:30pm

1	2	3	4	5	total
10 pts	50 pts				

Please read the following instructions carefully:

- Write your name on all sheets.
- You may not use any books, notes, or calculators.
- Switch off any electronic devices and put them in your bag (moblie phones, tablets, etc.)
- Exam duration: $\mathbf{1 8 0}$ minutes
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Do not use pencils but rather pens.

Good luck!

Notation

- Unless otherwise stated, $|\cdot|$ denotes the Euclidean vector norm in $\mathbb{R}^{n}(n \in \mathbb{N})$: For a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n},|x|:=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$.
- $\mathbb{R}_{\geq 0}:=\{x \in \mathbb{R} \mid x \geq 0\}$
- For a function $y=y(t)$ depending on a variable $t \in \mathbb{R}$ (or a subset of \mathbb{R}), $y^{\prime}(t)$ denotes the derivative with respect to that variable

$$
y^{\prime}(t)=\frac{d y(t)}{d t}
$$

- For a function $u=u(t, x)=u\left(t, x_{1}, \ldots, x_{n}\right)\left(x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\right)$ depending on several variables, its partial derivatives with respect to the variables are denoted by

$$
\frac{\partial u}{\partial t}(t, x)=\partial_{t} u(t, x)=u_{t}(t, x), \quad \frac{\partial u}{\partial x_{j}}(t, x)=\partial_{x_{j}} u(t, x)=u_{x_{j}}(t, x), \quad j=1, \ldots, n
$$

We use powers to indicate we apply several partial derivatives, e.g., $\frac{\partial^{2} u}{\partial t^{2}}=\partial_{t}^{2} u=\partial_{t} \partial_{t} u$ or $\frac{\partial^{3} u}{\partial x_{j}^{3}}=\partial_{x_{j}}^{3}=\partial_{x_{j}} \partial_{x_{j}} \partial_{x_{j}}$.

- For a scalar valued function $u=u(x)$ (depending on space) or a function $u=u(t, x)$ (depending on space and time), we denote the gradient with respect to the spatial variables by $D u=\left(\partial_{x_{1}} u, \ldots, \partial_{x_{n}} u\right)$ and the Laplace operator

$$
\Delta u=\sum_{j=1}^{n} \partial_{x_{j}}^{2} u
$$

- For a set $U \subset \mathbb{R}^{n}, n, m \in \mathbb{N}$ we denote

$$
\begin{aligned}
& C^{0}\left(U ; \mathbb{R}^{m}\right)=\left\{u: U \rightarrow \mathbb{R}^{m} \mid u \text { is continuous }\right\} \\
& C^{k}\left(U ; \mathbb{R}^{m}\right)=\left\{u: U \rightarrow \mathbb{R}^{m} \mid u \text { is } k \text { times continuously differentiable }\right\} \\
& C^{\infty}\left(U ; \mathbb{R}^{m}\right)=\left\{u: U \rightarrow \mathbb{R}^{m} \mid u \text { is infintively often continuously differentiable }\right\} \\
& C_{c}^{k}\left(U ; \mathbb{R}^{m}\right)=\left\{u: U \rightarrow \mathbb{R}^{m} \mid u \in C^{k}\left(U, \mathbb{R}^{m}\right) \text { and compactly supported in } U\right\} \\
& C_{c}^{\infty}\left(U ; \mathbb{R}^{m}\right)=\left\{u: U \rightarrow \mathbb{R}^{m} \mid u \in C^{\infty}\left(U, \mathbb{R}^{m}\right) \text { and compactly supported in } U\right\}
\end{aligned}
$$

We say f is smooth if $f \in C^{\infty}\left(U ; \mathbb{R}^{m}\right)$ and write $C^{k}(U)=C^{k}(U ; \mathbb{R})$ etc.

- A function $f: U \rightarrow \mathbb{R}^{m}\left(U \subset \mathbb{R}^{n}\right.$ a set, $\left.n, m \in \mathbb{N}\right)$ is Lipschitz continuous if there exists a positive real constant K such that for all $x_{1}, x_{2} \in U$,

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq K\left|x_{1}-x_{2}\right|
$$

Problem 1: ODEs

Consider an ODE $y^{\prime}=f(t, y(t))$ where f is continuous for all $(t, y) \in \mathbb{R}^{2}$. Assume an initial value problem

$$
y^{\prime}=f(t, y(t)), \quad y(0)=y_{0}
$$

has two distinct solutions on $[0, T]$ for some $T>0$. In particular, assume that the two solutions are bounded and take different values at $t=T$. Show that the ODE has infinitely many such solutions.

Problem 2: Elliptic equations

Let $U \subset \mathbb{R}^{n}$ be a bounded smooth domain of $\mathbb{R}^{n}, n \geq 1$.
a) Let $B_{r}(x)=\left\{y \in \mathbb{R}^{n}| | x-y \mid<r\right\}$ the ball with radius $r>0$ in \mathbb{R}^{n} and $\partial B_{r}(x)$ its boundary. Prove that for any $\phi \in C^{2}(U)$,

$$
r^{n-1} \frac{\partial}{\partial r}\left(r^{1-n} \int_{\partial B_{r}(x)} \phi(y) d S(y)\right)=\int_{B_{r}(x)} \Delta \phi(y) d y, \quad \text { for all } B_{r}(x) \subset U .
$$

b) Now let $f: U \rightarrow \mathbb{R}$ a continuous positive function and consider the PDE

$$
\begin{aligned}
& \Delta\left(u^{2}\right)=f, \quad x \in U \\
& u=0, \quad x \in \partial U
\end{aligned}
$$

Does a solution $u \in C^{2}(U) \cap C^{0}(\bar{U})$ of this PDE exist?

Problem 3: Parabolic equations

Suppose that $u \in C^{2}([0, \infty) \times[0,1])$ is a solution of the initial boundary value problem

$$
\begin{aligned}
u_{t} & =u_{x x}+c u^{2}, \quad t>0,0<x<1, \\
u(0, x) & =u_{0}(x), \quad 0 \leq x \leq 1 \\
u(t, 0) & =u(t, 1)=0, \quad t>0
\end{aligned}
$$

where c is a positive constant and $u_{0} \in C^{2}([0,1])$ with $u_{0}(0)=u_{0}(1)=0$.
a) Show that

$$
\sup _{x \in[0,1]}|u(t, x)|^{2} \leq \int_{0}^{1}\left|u_{x}(t, x)\right|^{2} d x .
$$

b) Show that

$$
\frac{1}{2} \frac{d}{d t} \int_{0}^{1}|u(t, x)|^{2} d x \leq-\int_{0}^{1}\left|u_{x}(t, x)\right|^{2} d x\left(1-c\left(\int_{0}^{1}|u(t, x)|^{2} d x\right)^{1 / 2}\right)
$$

c) If the initial data u_{0} satisfies $\int_{0}^{1}\left|u_{0}(x)\right|^{2} d x<1 / c^{2}$, show that u satisfies $\int_{0}^{1}|u(t, x)|^{2} d x<1 / c^{2}$ for all times.
d) If the boundary condition is changed to $\partial_{x} u(t, x)=0$ at $x=0$ and $x=1$ (and same for the initial data), find a counterexample, i.e., find an initial data u_{0} for which the solution blows up in finite time.

Problem 4: Wave equation

Find a closed form (similar to D'Alembert's formula) of the solution $u(t, x)$ of

$$
\begin{aligned}
& u_{t t}-c^{2} u_{x x}=0, \quad \text { for } t, x>0 \\
& u(0, x)=g(x), \quad \text { for } x>0 \\
& u_{t}(0, x)=h(x), \quad \text { for } x>0 \\
& u_{x}(t, 0)=\alpha(t), \quad \text { for } t \geq 0
\end{aligned}
$$

where $g, h, \alpha \in C^{2}$ satisfy $\alpha(0)=g^{\prime}(0)$ and $\alpha^{\prime}(0)=h^{\prime}(0)$.

Problem 5: Scalar conservation laws

Consider the conservation law

$$
\begin{equation*}
u_{t}+u^{3} u_{x}=0, \quad u(0, x)=u_{0}(x) \tag{3}
\end{equation*}
$$

for $(t, x) \in \mathbb{R}_{\geq 0} \times \mathbb{R}$ and initial data u_{0}.
a) Define the characteristics for (3).
b) For the initial data

$$
u_{0}(x)=\left\{\begin{array}{l}
-2, \quad x<0 \\
1, \quad x \geq 0
\end{array}\right.
$$

find two different weak solutions of the above PDE.
c) What is an entropy condition for the above PDE?
d) Find the entropy solution for the given initial data.

