Differential Equations: Basic Exam

Tuesday, January 21, 2020, 4:30-7:30pm

1	2	3	4	5	total
10 pts	50 pts				

Notation

- Unless otherwise stated, $|\cdot|$ denotes the Euclidean vector norm in $\mathbb{R}^{n}(n \in \mathbb{N})$: For a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n},|x|:=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$.
- $\mathbb{R}_{\geq 0}:=\{x \in \mathbb{R} \mid x \geq 0\}$
- For a function $y=y(t)$ depending on a variable $t \in \mathbb{R}$ (or a subset of \mathbb{R}), $y^{\prime}(t)$ denotes the derivative with respect to that variable

$$
y^{\prime}(t)=\frac{d y(t)}{d t}
$$

- For a function $u=u(t, x)=u\left(t, x_{1}, \ldots, x_{n}\right)\left(x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\right)$ depending on several variables, its partial derivatives with respect to the variables are denoted by

$$
\frac{\partial u}{\partial t}(t, x)=\partial_{t} u(t, x)=u_{t}(t, x), \quad \frac{\partial u}{\partial x_{j}}(t, x)=\partial_{x_{j}} u(t, x)=u_{x_{j}}(t, x), \quad j=1, \ldots, n
$$

We use powers to indicate we apply several partial derivatives, e.g., $\frac{\partial^{2} u}{\partial t^{2}}=\partial_{t}^{2} u=\partial_{t} \partial_{t} u$ or $\frac{\partial^{3} u}{\partial x_{j}^{3}}=\partial_{x_{j}}^{3}=\partial_{x_{j}} \partial_{x_{j}} \partial_{x_{j}}$.

- For a scalar valued function $u=u(x)$ (depending on space) or a function $u=u(t, x)$ (depending on space and time), we denote the gradient with respect to the spatial variables by $D u=\left(\partial_{x_{1}} u, \ldots, \partial_{x_{n}} u\right)$ and the Laplace operator

$$
\Delta u=\sum_{j=1}^{n} \partial_{x_{j}}^{2} u
$$

- For a set $U \subset \mathbb{R}^{n}, n, m \in \mathbb{N}$ we denote

$$
\begin{aligned}
& C^{0}\left(U ; \mathbb{R}^{m}\right)=\left\{u: U \rightarrow \mathbb{R}^{m} \mid u \text { is continuous }\right\} \\
& C^{k}\left(U ; \mathbb{R}^{m}\right)=\left\{u: U \rightarrow \mathbb{R}^{m} \mid u \text { is } k \text { times continuously differentiable }\right\} \\
& C^{\infty}\left(U ; \mathbb{R}^{m}\right)=\left\{u: U \rightarrow \mathbb{R}^{m} \mid u \text { is infintively often continuously differentiable }\right\} \\
& C_{c}^{k}\left(U ; \mathbb{R}^{m}\right)=\left\{u: U \rightarrow \mathbb{R}^{m} \mid u \in C^{k}\left(U, \mathbb{R}^{m}\right) \text { and compactly supported in } U\right\} \\
& C_{c}^{\infty}\left(U ; \mathbb{R}^{m}\right)=\left\{u: U \rightarrow \mathbb{R}^{m} \mid u \in C^{\infty}\left(U, \mathbb{R}^{m}\right) \text { and compactly supported in } U\right\}
\end{aligned}
$$

We say f is smooth if $f \in C^{\infty}\left(U ; \mathbb{R}^{m}\right)$ and write $C^{k}(U)=C^{k}(U ; \mathbb{R})$ etc.

- A function $f: U \rightarrow \mathbb{R}^{m}\left(U \subset \mathbb{R}^{n}\right.$ a set, $\left.n, m \in \mathbb{N}\right)$ is Lipschitz continuous if there exists a positive real constant K such that for all $x_{1}, x_{2} \in U$,

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq K\left|x_{1}-x_{2}\right|
$$

Problem 1: ODEs

Let $f: \mathbb{R}_{\geq 0} \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous and assume that its derivative $\partial_{y} f(t, y)$ with respect to the variable y is continuous and satisfies $\partial_{y} f(t, y) \leq k(t)$ for a continuous function $k:[0, \infty) \rightarrow \mathbb{R}$. We consider the ordinary differential equation

$$
\begin{equation*}
y^{\prime}(t)=f(t, y(t)), \quad t \in[0, \alpha), \quad y(0)=y_{0} \tag{1}
\end{equation*}
$$

where $y_{0} \in \mathbb{R}$ and $\alpha>0$ such that the solution y of (1) exists in $[0, \alpha)$.
a) Show that if $y_{1}(t)$ and $y_{2}(t)$ for $t>0$ are solutions of (1) with initial data y_{0}^{1} and y_{0}^{2} respectively, they satisfy

$$
\left|y_{1}(t)-y_{2}(t)\right| \leq \exp \left(\int_{0}^{t} k(s) d s\right)\left|y_{0}^{1}-y_{0}^{2}\right|
$$

b) Show that (1) has solutions defined for all positive times $t \in[0, \infty)$.
c) Now consider

$$
\begin{equation*}
y^{\prime}(t)=f(t, y(t))+F(t, y(t)), \quad t \in[0, \infty), \quad y(0)=y_{0} \tag{2}
\end{equation*}
$$

where $y_{0} \in \mathbb{R}, f, F: \mathbb{R}_{\geq 0} \times \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions, and the y-derivative of f is continuous and satisfies $\partial_{y} f(t, y) \leq m<0$ and $f(t, 0)=0$ for all t, and $F(t, y)$ satisfies $|F(t, y)| \leq g(t)$ with $\int_{0}^{\infty} g(s) d s<\infty$. Show that under these conditions (2) has bounded solutions in $t \in[0, \infty)$.

Problem 2: Harmonic functions: A maximum principle

Suppose $u \in C^{2}\left(\mathbb{R}_{+}^{2}\right) \cap C^{0}\left(\overline{\mathbb{R}}_{+}^{2}\right)$ is harmonic in \mathbb{R}_{+}^{2} and bounded in $\overline{\mathbb{R}}_{+}^{2}$. Prove the maximum principle

$$
\sup _{\mathbb{R}_{+}^{2}} u=\sup _{\partial \mathbb{R}_{+}^{2}} u .
$$

Here \mathbb{R}_{+}^{2} is the half-space $\mathbb{R}_{+}^{2}:=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ and $\overline{\mathbb{R}}_{+}^{2}$ its closure: $\overline{\mathbb{R}}_{+}^{2}:=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq\right.$ $0\}$.

Hint: Consider for $\epsilon>0$ the function

$$
v_{\epsilon}(x, y)=u(x, y)-\epsilon \log \left(x^{2}+(y+1)^{2}\right) .
$$

Problem 3: Explicit formula for a parabolic equation

Find an explicit formula for the solution of

$$
\begin{aligned}
\partial_{t} u+\alpha \cdot D u-\beta \Delta u+\gamma u & =f, & & t>0, x \in \mathbb{R}^{n} \\
u & =g, & t & =0, x \in \mathbb{R}^{n}
\end{aligned}
$$

where $\alpha \in \mathbb{R}^{n}, \mathbb{R} \ni \beta>0, \gamma \in \mathbb{R}, g \in C_{c}^{2}\left(\mathbb{R}^{n}\right)$, and $f \in C_{c}^{2}\left([0, \infty) \times \mathbb{R}^{n}\right)$.

Problem 4: Wave equations

Let $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), n \geq 1$ and let u be a smooth solution of

$$
\begin{aligned}
& \partial_{t}^{2} u-\Delta u=0, \quad t>0, x \in \mathbb{R}^{n} \\
& u(0, x)=0, \quad u_{t}(0, x)=f(x), \quad t=0, x \in \mathbb{R}^{n}
\end{aligned}
$$

Let $v(t, x)=\int_{0}^{t} u(s, x) d s$. Prove that

$$
\int_{\mathbb{R}^{n}}(\Delta v(t, x))^{2} d x \leq 4 \int_{\mathbb{R}^{n}}(f(x))^{2} d x
$$

Problem 5: A scalar conservation law with source term

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice continuously differentiable convex function. Assume $g: \mathbb{R} \rightarrow \mathbb{R}$ is a Lipschitz continuous function. Consider the balance law

$$
\begin{equation*}
\partial_{t} u+\partial_{x} f(u)=g(u), \quad t>0, x \in \mathbb{R}, \quad u(0, x)=u_{0}(x), \quad t=0, x \in \mathbb{R} \tag{3}
\end{equation*}
$$

a) Define the characteristics for (3).
b) What is the Rankine-Hugoniot (jump) condition along a discontinuity for weak solutions in this case?
c) Set $f(u)=u^{2} / 2, g(u)=u$ and

$$
u_{0}(x)=\left\{\begin{array}{l}
1, \quad x<0 \\
-1, \quad x \geq 0
\end{array}\right.
$$

Find a weak solution of (3) for this case.
d) What is an entropy condition for (3)?

