Basic Examination in Differential Equations

Instructions: Work all 5 problems. Time allowed: 3 hours

Problem 1 : Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is Lipschitz continuous with Lipschitz constant K, and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is Lipschitz continuous and bounded, with $|g(z)| \leq M$ for all $z \in \mathbb{R}^{n}$. Let x and y be the maximal solutions of the respective initial value problems

$$
\left\{\begin{array} { l }
{ \dot { x } (t) = f (x (t)) , } \\
{ x (0) = x _ { 0 } , }
\end{array} \quad \left\{\begin{array}{l}
\dot{y}(t)=f(y(t))+g(y(t)), \\
y(0)=y_{0} .
\end{array}\right.\right.
$$

Show that for all $t \geq 0, x(t)$ and $y(t)$ are defined and satisfy

$$
|x(t)-y(t)| \leq\left(\left|x_{0}-y_{0}\right|+M t\right) e^{K t} .
$$

Problem 2: Assume $u: \mathbb{R}^{3} \backslash\{0\} \rightarrow \mathbb{R}$ is $C^{2}, u(x)=o\left(|x|^{-1}\right)$ and $D u(x)=o\left(|x|^{-2}\right)$ as $x \rightarrow 0$, and $\Delta u=0$ in $\mathbb{R}^{3} \backslash\{0\}$.
(a) Suppose $\Omega \subset \mathbb{R}^{3}$ be any bounded smooth domain with $0 \in \Omega$, and v (but not u) is C^{2} on $\bar{\Omega}$. Prove

$$
\int_{\Omega} u \Delta v=\int_{\partial \Omega}\left(u \frac{\partial v}{\partial \nu}-\frac{\partial u}{\partial \nu} v\right) d S .
$$

(b) Given any $x \in \mathbb{R}^{3} \backslash\{0\}$, take for granted that $\Delta v=1$ in $R^{3} \backslash\{x\}$ if

$$
v(y)=\frac{r^{2}}{6}+\frac{c_{1}}{r}+c_{2}, \quad r=|y-x|, \quad c_{1}, c_{2} \text { constant. }
$$

Using part (a), prove that whenever $R>|x|>\varepsilon>0$ and $A(x, \varepsilon, R)=\left\{y \in \mathbb{R}^{3}: \varepsilon<|y-x|<R\right\}$,

$$
u(x)=\frac{1}{|A(x, \varepsilon, R)|} \int_{A(x, \varepsilon, R)} u d y . \quad(\text { Here }|A| \text { is the volume of } A .)
$$

(c) Now prove that $c=\lim _{x \rightarrow 0} u(x)$ exists, and show that with the definition $u(0)=c, u$ becomes harmonic on all of \mathbb{R}^{3}.

Problem 3: Let $u_{0}: \mathbb{R} \rightarrow \mathbb{R}$ be continuous, bounded and odd: $u_{0}(-x)=-u_{0}(x)$. Let $u(x, t)$ be the solution of the heat equation $u_{t}=u_{x x}$ for $x \in \mathbb{R}, t>0$, satisfying $u(x, 0)=u_{0}(x)$, given by convolution of u_{0} with the fundamental solution $\Phi(x, t)$.
Suppose $u_{0}(x)=\frac{1}{x^{p}}$ for all $x>1$. For what values of $p>1$ does

$$
v(x)=\lim _{t \rightarrow \infty} t^{p / 2} u(x \sqrt{t}, t)
$$

exist in \mathbb{R} for all x ? Justify your answer. (Hints: Some p, but not all. Also, $(a+b)^{2}=(a-b)^{2}+4 a b$.)

Problem 4: Solve for the entropy (weak) solution of the conservation law $u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0$ for $x \in \mathbb{R}, t>0$, with initial data

$$
u(x, 0)= \begin{cases}1-x & \text { for } 0 \leq x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Draw a graph of the characteristic curves and any shock curves in the (x, t) plane.

Problem 5 : Suppose $a: \mathbb{R} \rightarrow \mathbb{R}$ is smooth with $0<a(x)<1$ for all x. Let $u: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be C^{2} and solve the PDE

$$
u_{t t}=\left(a(x) u_{x}\right)_{x}
$$

for all $x \in \mathbb{R}, t \in \mathbb{R}$, with initial data $u(x, 0)=g(x), \quad u_{t}(x, 0)=h(x)$. Suppose $g(x)=h(x)=0$ whenever $x>0$. Prove that $u(x, t)=0$ whenever $x>t$, by using an energy method to bound

$$
E_{\lambda}(t):=\frac{1}{2} \int_{\mathbb{R}}\left(u_{t}^{2}+a(x) u_{x}^{2}\right) e^{\lambda x} d x
$$

for arbitrary $\lambda>0$. You may assume the function $x \rightarrow u(x, t)$ has compact support for each t.

