Basic Examination in Differential Equations

Time allowed: 3 hours

Problem 1 : Let $c, L, T>0$ and assume $u:[0, L] \times[0, T] \rightarrow[0, \infty)$ is nonnegative and C^{2} (i.e., derivatives on the domain's interior extend continuously to its closure) and satisfies

$$
\begin{aligned}
& \partial_{t} u=\partial_{x}^{2} u+c^{2} u+u^{2}, \quad x \in(0, L), \quad t \in(0, T), \\
& u(0, t)=u(L, t)=0, \quad t \in[0, T] .
\end{aligned}
$$

Define an "energy" via $E(t)=\int_{0}^{L} u(x, t) \phi(x) d x=\int_{0}^{L}(u \sqrt{\phi}) \sqrt{\phi} d x$,
where $\phi(x)=a \sin (b x)$ with a, b chosen so $\phi(L)=0, \phi(x)>0$ on $(0, L)$, and $\int_{0}^{L} \phi(x) d x=1$. If $c L \geq \pi$, show $E^{2} \leq d E / d t$. Deduce that necessarily $E(0) T<1$.

Problem 2: Consider the following scalar conservation law with flux $f(u)=-u^{3}$:

$$
\partial_{t} u-\partial_{x}\left(u^{3}\right)=0, \quad(x, t) \in U=\mathbb{R} \times(0, \infty)
$$

(a) Describe two different weak solutions on $\bar{U}=\mathbb{R} \times[0, \infty)$ that have the same initial data

$$
u(x, 0)=u_{0}(x)= \begin{cases}1 & \text { for } x<0 \\ 0 & \text { for } x>0\end{cases}
$$

(b) Suppose $v_{0}: \mathbb{R} \rightarrow \mathbb{R}$ is smooth and decreasing and satisfies

$$
v_{0}(x) \rightarrow 1 \text { as } x \rightarrow-\infty, \quad v_{0}(x) \rightarrow 0 \text { as } x \rightarrow+\infty .
$$

Using the method of characteristics, show that the conservation law has a global solution $u \in C^{1}(U) \cap C(\bar{U})$ satisfying $u(x, 0)=v_{0}(x)$ for all $x \in \mathbb{R}$.
(c) Given the solution u from part (b), determine the limit $v(x, t)=\lim _{\varepsilon \downarrow 0} u\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon}\right) \quad$ for $x \in \mathbb{R}, t>0$.

Problem 3: Suppose $a: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, positive and bounded. Prove the following weak maximum principle: If $M>0$ is constant, and $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is bounded and C^{2}, and satisfies

$$
u(x)-a(x) \Delta u(x) \leq M \quad \forall x \in \mathbb{R}^{n}, \quad \text { then } \quad u(x) \leq M \quad \forall x \in \mathbb{R}^{n}
$$

(Note: $\max _{x} u(x)$ need not exist, but if $\varepsilon>0$ and $u_{\varepsilon}=u-\varepsilon|x|^{2}$, then $\max _{x} u_{\varepsilon}(x)$ always exists.)

Problem 4 : Formulate Duhamel's principle for the solution to the inhomogeneous wave equation in one space dimension with vanishing initial data:

$$
\partial_{t}^{2} u-\partial_{x}^{2} u=H(x, t), \quad(x, t) \in \mathbb{R} \times \mathbb{R}, \quad u(x, 0)=0, \quad \partial_{t} u(x, 0)=0 .
$$

Suppose next that $H(x, t)=e^{i t} a(x)$ where $a(x)=0$ for $|x|>1$. Show that there is a function $b(x)$ and a constant c such that for every $x \in \mathbb{R}$,

$$
\lim _{t \rightarrow \infty} u(x, t)-e^{i t} b(x)=c .
$$

Problem 5: Show that in \mathbb{R}^{3}, the function

$$
\Phi(x)=\frac{e^{-r}}{4 \pi r}, \quad r=|x|,
$$

is the fundamental solution to the PDE

$$
u-\Delta u=f
$$

That is, show that if f is smooth with compact support, then the convolution

$$
u(x)=\int_{\mathbb{R}^{3}} \Phi(y) f(x-y) d^{3} y
$$

is a solution of the PDE. Note that only a brief justification is needed for the formula

$$
\Delta u=\int_{\mathbb{R}^{3}} \Phi(y) \Delta_{x} f(x-y) d^{3} y .
$$

