DEPARTMENT OF MATHEMATICAL SCIENCES CARNEGIE MELLON UNIVERSITY

BASIC EXAMINATION IN DIFFERENTIAL EQUATIONS

Time allowed: 3 hours

Problem 1 : Let c, L, T > 0 and assume $u : [0, L] \times [0, T] \rightarrow [0, \infty)$ is nonnegative and C^2 (i.e., derivatives on the domain's interior extend continuously to its closure) and satisfies

$$\partial_t u = \partial_x^2 u + c^2 u + u^2, \quad x \in (0, L), \quad t \in (0, T), u(0, t) = u(L, t) = 0, \quad t \in [0, T].$$

Define an "energy" via $E(t) = \int_0^L u(x,t)\phi(x) \, dx = \int_0^L (u\sqrt{\phi})\sqrt{\phi} \, dx$, where $\phi(x) = a\sin(bx)$ with a, b chosen so $\phi(L) = 0$, $\phi(x) > 0$ on (0, L), and $\int_0^L \phi(x) \, dx = 1$. If $cL \ge \pi$, show $E^2 \le dE/dt$. Deduce that necessarily E(0)T < 1.

Problem 2 : Consider the following scalar conservation law with flux $f(u) = -u^3$:

$$\partial_t u - \partial_x (u^3) = 0, \qquad (x,t) \in U = \mathbb{R} \times (0,\infty).$$

(a) Describe two different weak solutions on $\overline{U} = \mathbb{R} \times [0, \infty)$ that have the same initial data

$$u(x,0) = u_0(x) = \begin{cases} 1 & \text{for } x < 0, \\ 0 & \text{for } x > 0. \end{cases}$$

(b) Suppose $v_0 : \mathbb{R} \to \mathbb{R}$ is smooth and decreasing and satisfies

$$v_0(x) \to 1$$
 as $x \to -\infty$, $v_0(x) \to 0$ as $x \to +\infty$.

Using the method of characteristics, show that the conservation law has a global solution $u \in C^1(U) \cap C(\overline{U})$ satisfying $u(x,0) = v_0(x)$ for all $x \in \mathbb{R}$.

(c) Given the solution u from part (b), determine the limit $v(x,t) = \lim_{\varepsilon \downarrow 0} u\left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon}\right)$ for $x \in \mathbb{R}, t > 0$.

Problem 3 : Suppose $a : \mathbb{R}^n \to \mathbb{R}$ is continuous, positive and bounded. Prove the following weak maximum principle: If M > 0 is constant, and $u : \mathbb{R}^n \to \mathbb{R}$ is bounded and C^2 , and satisfies

$$u(x) - a(x)\Delta u(x) \le M \quad \forall x \in \mathbb{R}^n, \text{ then } u(x) \le M \quad \forall x \in \mathbb{R}^n.$$

(Note: $\max_x u(x)$ need not exist, but if $\varepsilon > 0$ and $u_{\varepsilon} = u - \varepsilon |x|^2$, then $\max_x u_{\varepsilon}(x)$ always exists.)

CONTINUE ON NEXT PAGE

Problem 4 : Formulate Duhamel's principle for the solution to the inhomogeneous wave equation in one space dimension with vanishing initial data:

$$\partial_t^2 u - \partial_x^2 u = H(x,t), \quad (x,t) \in \mathbb{R} \times \mathbb{R}, \quad u(x,0) = 0, \quad \partial_t u(x,0) = 0.$$

Suppose next that $H(x,t) = e^{it}a(x)$ where a(x) = 0 for |x| > 1. Show that there is a function b(x) and a constant c such that for every $x \in \mathbb{R}$,

$$\lim_{t \to \infty} u(x,t) - e^{it}b(x) = c.$$

Problem 5 : Show that in \mathbb{R}^3 , the function

$$\Phi(x) = \frac{e^{-r}}{4\pi r}, \quad r = |x|,$$

is the fundamental solution to the PDE

$$u - \Delta u = f$$

That is, show that if f is smooth with compact support, then the convolution

$$u(x) = \int_{\mathbb{R}^3} \Phi(y) f(x-y) \, d^3 y$$

is a solution of the PDE. Note that only a brief justification is needed for the formula

$$\Delta u = \int_{\mathbb{R}^3} \Phi(y) \Delta_x f(x-y) \, d^3 y \, .$$