Algebra basic exam, September 2021

180 minutes

Each of the five questions is worth the same.

- 1. (a) Define the term *unique factorization domain*.
 - (b) Is the ring $\mathbb{Z}[x, y]$ unique factorization domain?
- 2. (a) A group G of order 35 acts on a set X of size 16. Show that the action has a fixed point.
 - (b) Show that, up to isomorphism, there is a unique group of order 35.

Hint/warning: The parts (a) and (b) are unrelated.

- 3. Let p be a prime, and let \mathbb{F}_p a field with p element. Let $f \in \mathbb{F}_p[x]$ be a polynomial such that the map $c \mapsto f(c)$ is an automorphism of \mathbb{F}_p . Show that either deg f = 1 or deg $f \ge p$.
- 4. (a) Define the terms *splitting field* and *Galois group*.
 - (b) What are all the possible Galois groups of the splitting field of $x^4 + n$ over \mathbb{Q} , for n an integer?
- 5. Let R be a commutative ring with 1.
 - (a) Define the term *free R-module*.
 - (b) Suppose M and N are free R-modules. Is $M \otimes_R N$ necessarily free?