ALGEBRA BASIC EXAM: SEPTEMBER 2020

Attempt four of the following six questions. All questions carry equal weight.
All rings are assumed to be rings with 1, and all ring homomorphisms are assumed
to preserve 1.

(1)

(2)

State and prove the Sylow theorem(s). Prove that if G is finite, H <<G and
P is a Sylow p-subgroup of H for some prime p then G = HNg(P), where
N¢(P) is the normaliser of P in G. Hint: Let g € G,and consider PY.
Define the concept of nilpotent group. Prove that if G is a nilpotent group
and M < G then M < Ng(M). Hint: Think about the lower (descending)
central series of G.

Define the terms algebraic extension, separable extension, normal extension,
splitting field extension, Galois extension. State some version of the theorem
on uniqueness of splitting field extensions, and use it to prove that splitting
field extensions are normal.

State the Fundamental Theorem of Galois theory. Let o = v/2 and ¢ =
e™/* and let F = Q(a, ¢). Determine with proof:

(a) [Q() : @, [Q() : Q] and [F : Q.

(b) The structure of Aut(F/Q).

(c) The field FNR.

(d) All intermediate fields, identifying those which are Galois extensions
of Q.

Hint: Find a polynomial for which F is a splitting field extension, and note
that ¢+ (7! = a?.
Let R be a commutative ring with 1. Define the terms mazimal ideal of R,
prime ideal of R, and nilpotent element of R.

The Jacobson radical J(R) is defined to be the intersection of the maxi-
mal ideals of R. Prove that:

(a) J(R) is an ideal of R.

(b) For a € R, a € J(R) if and only if 1 + ab is a unit for every b € R.

(¢) Every nilpotent element of R is in J(R).

Let R be a commutative ring with 1, and define a simple R-module to be
an R-module M such that M # 0 and the only submodules of M are 0 and
M.

(a) Let M be a simple R-module. Prove that M is cyclic, that is M = Rm
for some m € M. Prove that M is isomorphic as an R-module to R/I
where [ is a maximal ideal of R. Hint: r — rm is a surjective R-
module homomorphism.

(b) Let M and N both be simple R-modules and let o : M — N be R-
linear. Prove that either &« = 0 or « is an isomorphism between M
and N.



