Algebra Basic Exam, September 2018

Attempt **FOUR** of the following six problems; all have equal weight. Exactly one problem requires some form of the axiom of choice.

Problem 1. Prove Sylow's first theorem in the following form: if G is a finite group and p^k is a prime power dividing |G|, then G possesses a subgroup of cardinality p^k .

Problem 2.

- (a) Provide a definition of a *nilpotent group* in terms of the existence of a particular chain of subgroups (there are a couple of equivalent options; any will do).
- (b) Prove that any finite group whose cardinality is a prime power is a nilpotent group.

Problem 3. Suppose that R is a commutative ring with 1, and $r \in R$ is arbitrary. Show that r is an element of every prime ideal of R if and only if there is some $n \in \mathbb{N}$ with $r^n = 0$.

Problem 4. Suppose that R is a commutative ring with 1 which is Noetherian. Show that its polynomial ring R[x] is also a Noetherian ring.

Problem 5.

- (a) Given a field F and a polynomial $f \in F[x]$, define what it means for a field extension $K \supseteq F$ to be a *splitting field* of f over F.
- (b) Given a polynomial $f \in F[x]$ and two splitting fields K_0, K_1 of f over F, prove that $K_0 \cong K_1$

Problem 6. Consider the polynomial $f = x^5 - 10x + 5 \in \mathbb{Q}[x]$, and let $K \subseteq \mathbb{C}$ be its splitting field over \mathbb{Q} . Identify $\operatorname{Aut}(K)$ with a familiar finite group, and prove that the groups are isomorphic. Here $\operatorname{Aut}(K)$ is the group of all automorphisms of K, equipped with the operation of composition.