ALGEBRA BASIC EXAM: SEPTEMBER 2014

Attempt four of the following six questions. All questions carry equal weight. All rings are assumed to be commutative rings with 1.

- (1) (a) Let the group G act on the set X. Define the terms "orbit" and "stabiliser". State and prove the orbit-stabiliser relation.
 - (b) Let p be prime and let G be a group of order p^n for some n > 0. By considering the action of G on G by conjugation, or otherwise, prove that $Z(G) \neq 1$.
 - (c) Let p be prime and let G be a group of order p^n for some n > 0. Prove that [G, G] < G where [G, G] is the commutator subgroup of G. Hint: Use the last part to power an induction.
- (2) Let R be a ring and let M be an R-module. Define M[x] to be the set of polynomials with coefficients in M, and make M[x] into an R[x]-module in the obvious way. Prove that if M is a Noetherian R-module then M[x] is a Noetherian R[x]-module.
- (3) State the Fundamental Theorem of Galois theory. Let F be the unique subfield of \mathbb{C} which is a splitting field for $x^4 2$ over \mathbb{Q} . Identify (with proof) the fields intermediate between \mathbb{Q} and F which are Galois extensions of \mathbb{Q} .
- (4) Define the concepts "Noetherian ring", "principal ideal domain", "Euclidean domain", "unique factorisation domain", "prime element", "irreducible element". Let R be an ID. Prove that:
 - (a) If R is a PID, R is Noetherian.
 - (b) Every prime element is irreducible.
 - (c) If R is a PID then every irreducible element is prime.
 - (d) If R is Noetherian and every irreducible element is prime, then R is a UFD.
- (5) State and prove the Jordan-Hölder Theorem.
- (6) Define the terms separable extension, normal extension, splitting field, Galois extension. Prove or disprove by a counterexample the following statement: if E_1 is a normal extension of E_0 and E_2 is a normal extension of E_1 , then E_2 is a normal extension of E_0 .