Basic Examination Sample Measure and Integration

Solve three of the following problems.

- 1. State and prove Egoroff's theorem.
- 2. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set with $\mathcal{L}^{1}(E) > 0$. Prove that for every $0 < t < \mathcal{L}^{1}(E)$ there exists a Lebesgue measurable subset $F \subset E$ such that $\mathcal{L}^{1}(F) = t$.
- 3. Consider the function

$$F(y) = \int_0^\infty \frac{e^{-yx}}{1+x^2} \, dx, \quad y \ge 0.$$

- (a) Prove that F is continuous.
- (b) Prove that F is differentiable for y > 0.
- (c) Prove that F' is differentiable for y > 0.
- (d) Prove that $F''(y) + F(y) = \frac{1}{y}$ for all y > 0.
- 4. Let $f:\mathbb{R}\to\mathbb{R}$ be a differentiable function. Assume that there exists $M\geq 0$ such that

$$\left|f'\left(x\right)\right| \le M$$

for all $x \in [a, b]$ for some a < b.

- (a) Prove that f' is Borel measurable.
- (b) Prove that

$$\lim_{n \to \infty} \int_{a}^{b} f_{n}(x) \, dx = \int_{a}^{b} f'(x) \, dx,$$

where $f_n(x) := n \left[f\left(x + \frac{1}{n}\right) - f(x) \right], x \in \mathbb{R}.$

(c) Prove that

$$\int_{a}^{b} f'(x) \, dx = f(b) - f(a) \, .$$

Justify your work.