Basic Examination Sample Measure and Integration

Solve three of the following problems.

- 1. Let (X, \mathfrak{M}, μ) be a measure space. State and prove Hölder's inequality in $L^{p}(X), 1 \leq p \leq \infty$.
- 2. Let (X, \mathfrak{M}, μ) be a measure space and let $f \in L^1(X) \cap L^{\infty}(X)$.
 - (a) Prove that f belongs to $L^{p}(X)$ for all 1 .
 - (b) Prove that if μ is finite, then for all 1 ,

$$\|f\|_{L^{p}} \le \|f\|_{L^{\infty}} \left(\mu\left(X\right)\right)^{1/p}$$

(c) Prove that if μ is finite, then for any sequence $\{p_n\}$ of numbers satisfying $p_n > 1$ and $p_n \to \infty$ as $n \to \infty$,

$$\limsup_{n \to \infty} \|f\|_{L^{p_n}} \le \|f\|_{L^{\infty}}.$$

(d) Prove that if μ is finite, then

$$\lim_{p \to \infty} \|f\|_{L^p} = \|f\|_{L^\infty} \,.$$

3. Let $E \subset \mathbb{R}^N$ be bounded and define the Lebesgue inner measure of E as

$$\mathcal{L}_{i}^{N}(E) := \sup \left\{ \mathcal{L}_{o}^{N}(C) : C \text{ closed } C \subset E \right\}.$$

- (a) Prove that E is Lebesgue measurable if and only if $\mathcal{L}_{i}^{N}(E) = \mathcal{L}_{o}^{N}(E)$.
- (b) Prove that E is Lebesgue measurable if and only if there exists an F_{σ} set F and a G_{δ} set G with $F \subset E \subset G$ such that $\mathcal{L}^{N}(G \setminus E) = 0$ (hence the σ -algebra of Lebesgue measurable sets is the completion of the Borel σ -algebra).
- 4. Let $f:[0,\infty)\to\mathbb{R}$ be a continuous function such that

$$\lim_{x \to \infty} f(x) = \ell \in \mathbb{R}.$$

Prove that for every a > 0,

$$\lim_{n \to \infty} \int_0^a f(nx) \, dx = a\ell.$$

Justify your work.