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Abstract

A set of measures for Simmelian tie strength, Simmelian brokerage,
and, being Simmelianly brokered are introduced. The measures are
derived from interpretations of a quote from Simmel (1950). The the-
oretically most informative measure of Simmelian brokerage is based
on a complex value measure of Simmelian tie strength reflected in an
Hermitian matrix. Also measures based on weight matrices and hy-
pergraphs are discussed. A maximum for the number of ties one node
could Simmelian broker in a network of n nodes is determined.

1 Introduction

Simmel’s sociological theory (Simmel, 1950) has tremendous influence
on modern social network theory. For example, the basic ideas of
structural hole theory are inspired by Simmel’s ideas on brokers (Burt,
1992). However, also work related to group norm behavior can be
traced back to Simmel (Krackhardt, 1998). One intriguing idea first
presented by Krackhardt (1999) about brokers of cliques has prompted
this paper. He defines Simmelian ties as ties embedded in cliques. How-
ever, he doesn’t give a measure of Simmelian brokerage. Furthermore,
some measures of Simmelian ties and brokerage have been suggested
and used in the literature. However, derivation of those measures are
often ad hoc. Usually no direct connection is made to Simmel’s work
in the development of the measures.

In this paper a set of Simmelian tie and broker measures is defined
that are directly related to one quote from (Simmel, 1950). Four inter-
pretations of this quote are made explicit. Based on each interpretation

1



a measure or set of measures is defined. These measures of Simmelian
tie strength are used to determine Simmelian brokerage. Furthermore,
the paper derives extremal values for the tie as well as the brokerage
measures.

2 Theoretical Background

Krackhardt (1998) defines a Simmelian tie as a tie embedded in a
clique, because Simmel (1950) argues that group-size doesn’t funda-
mentally change the impact of groups on behavior, rather the change
from dyad to triad or larger groups changes individuals’ behavior. Sim-
mel (1950, p.138) states:

“Dyads thus have very specific features.This is shown
not only by the fact that the addition of a third person
completely changes them, but also, and even more so, by
the common observation that the further expansion to four
or more by no means correspondingly modifies the group
any further”.

The change occurs mainly because in groups of three or larger,
group norms become an effective means of coordination (see also, Cole-
man, 1990). Therefore, belonging to a group is more predictive of
behavior than the size of the group, according to Simmel (1950).

Krackhardt (1998) illustrates that Simmelian ties are very strong
and have a longer longevity than non-Simmelian ties. These ties have
at least three consequences for its constituents that Krackhardt (1999)
describes as reduced individuality, reduced bargaining power, and, en-
hanced conflict resolution. The main social mechanism in Simmelian
ties that affects individuals is norm consistent behavior.

This leads Krackhardt (1999) to bring up the issue of brokerage of
Simmelian ties. In case an individual is member of different cliques
she will face different sets of role expectations. According to role the-
ory this will evoke role stress for these individuals (see Krackhardt,
1999; Merton, 1968; Kahn et al., 1964). Simmelian brokerage hence is
harmful to individuals’ performance.

Unintentionally, Burt (1998) shows that Simmelian brokerage could
have positive effects, especially for members of minority groups. In his
paper on the gender of social capital he suggests that individuals that
belong to a minority group benefit from a broker that belong to a so-
cial majority. In the mechanism that Burt (1998) describes the broker
assures the “validity” of the individual from the minority group, and
acts as a mentor. An implicit assumption is that the broker introduces
the “protege” to other contacts. This implies that the mentor makes
the protege more structurally equivalent, i.e. also a broker. However,
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when the mentor and protege share ties with a number of mutually
unconnected individuals these ties become Simmelian (assuming sym-
metric ties). The structural equivalence between mentor and protege
implies that both become Simmelian brokers (see figure 1).
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M introduces P to others, 
and builds Simmelian triads 
(grey triangles). M and P 
become structurally 
equivalent Simmelian
brokers.

M brokers P with 3 others.

Figure 1: Simmelian brokerage through mentoring.

When Simmelian brokerage as shared social capital (Burt, 1998) is
beneficial, it could hurt those that are being brokered. In fact, here it is
proffered that when individual h faces a number of Simmelian brokers,
this could be a source for role stress. Therefore we will not only discuss,
measures of Simmelian tie strength and Simmelian brokers, but also
a measure to indicate the extend to which someone is Simmelianly
brokered.

To derive some theoretical conditions for Simmelian tie and broker-
age measures from Simmel (1950, p.138) we need to realize that there
are at least four possible different interpretations of his sentence on the
effects of adding a third to a dyad. Each of these interpretations leads
to different measures. When considering the behavioral opportunities
and restrictions that a Simmelian tie implies for an individual,

1. the size of a group adds no further insight; a dichotomous measure
is sufficient.

2. the size of a group adds no further insight, rather the number of
groups are more important, because these groups are the sources
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of behavioral restrictions (see Krackhardt, 1999); a measure that
indicates the number of groups two individuals share is sufficient.

3. the impact on behavioral restrictions of group size increases at a
decreasing rate. The strength of behavioral restrictions depends
on the number of others in joint groups; a measure that indicates
the number of individuals with whom two individuals share a
group is sufficient.

4. both interpretations 2 and 3 apply; a measure that combines
sources and strength of behavioral restrictions is sufficient.

Which interpretation is right most likely depends on application
and research context. In the next section several measures for Sim-
melian ties are derived, which are each consistent with one of the in-
terpretation stated above.

3 Simmelian Tie Measures

Interpretation 1 above suggests that a dichotomous measure of Sim-
melian ties is sufficient. Now, let Z be an n × n binary matrix rep-
resenting the presence (Zhj=1) and absence (Zhj=0) of relationships
between n individuals. Also, let Y be Z ∩Z ′ representing the symmet-
ric ties in Z. Now, a measure of Simmelian ties consistent with the
definition in (Krackhardt, 1998, 1999) and Simmel’s statement is

S = Y ⊗ (Y 2) (1)

The operator ⊗ indicates the element-wise Boolean operation that
produces 1 if both terms > 0. So, a Simmelian tie between i and j exists
whenever there is a symmetric tie between h and j and they each have
a symmetric tie in common with at least one other node. S in equation
(1) reflects the presence Shj = 1 or absence Shj = 0 of a Simmelian
tie. This result is identical to the result of the hypergraph approach
that Krackhardt and Kilduff (2002) propose. However equation (1)
presents a less computationally intensive approach.

Interpretation 2 above suggests that a measure that indicates the
number of groups two individuals share is sufficient. In fact, Krack-
hardt (1999) derives just such a measure. Krackhardt (1999) uses
interpretation 2 to formally define Simmelian ties as symmetric re-
lationships embedded in a clique. He assumes that the number of
individuals in the clique is immaterial to the effect that a clique has
on one member’s behavior.

Cliques are formally defined as the maximum groups of individuals
in which each individual has a symmetric relationships with each other
member of the group (Luce and Perry, 1949). Symmetric relationships
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exist if and only if there is a relationship from h to j, and a relationship
from j to h. The phrase ’maximum group’ implies that we cannot add
any other individual to the group that has symmetric relationships
with all other members of the group.

Hence, based on the Luce and Perry (1949) algorithm Krackhardt
(1999) defines the clique matrix as

Chk =
{

1 if an individual h belongs to clique k
0 if an individual h does not belong to clique k

(2)

To identify Simmelian ties Krackhardt (1999) calculates the co-clique
matrix as

K = CC ′, (3)

where C ′ is the transpose of C. Note that the diagonal of K in-
dicates the number of cliques to which each individual is a member.
The off-diagonal values indicate the number of cliques two individuals
share. This could be interpreted as the strength of a Simmelian tie in
terms of the number of sources for behavioral constraint.

Interpretation 3 suggests that a measure that indicates the number
of individuals with whom two individuals share a group is sufficient.
Such a measure respects the assertion Simmel makes, when we assume
that further expansion of a clique to four or more has some effect.
Different aspects of group-based behavior might in fact immediately
depend on the number of others in that group; e.g., Friedkin (2001) on
models for opinion formation.

In that case we have

SQ = Y · (Y 2) (4)

where [·] is the element-wise multiplication operator. This measure
indicates the number of individuals q, q ε k that have symmetric ties
with both h and j. These individuals q could be distributed over one
or different cliques. This means that h and j could share multiple
sets of norms when they both are members of a number of cliques.
It could be reasoned that irrespective of the number of cliques h and
j share (see equation 3), the number of individuals with whom they
share clique(s) (SQhj) might indicate how effective the norms between
h and j are. For example, an important sociological mechanism is
gossip where the individuals q are central in opinion formation about
behavior and intentions of both h and j (cf., Merry 1984; Coleman
1990). The relationships between h and q, and, j and q impute the
constraints on h and j, because they observe behavior of both, check
its consistency to norms, and tell others (h or j and other q) about
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inconsistencies. In this reasoning the number of individuals q enhances
the constraints h and j put on each others behavior, because more of
their behaviors become observable to each other.

Interpretation 4 suggests we should take information from measures
that take both the strength of behavioral constraint (interpretation 3)
as well as the number of sources for behavioral constraint (interpre-
tation 2) into account. There are several ways to include information
on both in one measure. Three ways will be considered here. First,
one could consider constructing some kind of weight matrix. Second,
based on equations (3) and (4) a Hermitian matrix can be constructed,
which is a square self-adjoint complex number matrix 1. We derive
from the Hermitian martix a real value measure for relative Simmelian
tie strength, which is consistent with interpretation 4. Furthermore,
in section 5.4 on how we can use eigenvalues to determine Simmelian
brokerage the Hermitian matrix approach proves to be valuable. Third
we explore some possibilities of using hypergraphs.

3.1 Weight Matrices

Let us define a weighting matrix of dimension k × k,

W = ω(diag(C ′C)) (5)

where W , the k× k diagonal weighting matrix, is a function of the
diagonal of C ′C that represent the number of individuals in clique k.
For example, if we wish to assume that clique size linearly increases
constraint we would use ω(diag(C ′C)) to define the diagonal values

W1 = (diag(C ′C))−1 (6)

This weighting matrix represents the share each individual has in
a clique. A large share indicates a small clique, while a small share
indicates a large clique. The maximal value is 1/3 as the minimal
clique size is 3; the minimal value is 1/n when there is one clique to
which all nodes in the Simmelian graph belong. However, the weights
in equation (6) are independent, and hence say nothing about relative
strength of behavioral restrictions in comparison to other cliques.

A specification that takes relative strength into consideration is

W2 =
1

Tr(diag(C ′C))
diag(C ′C) (7)

1A complex number has the form a + bi, where i denotes the imaginary number
√−1,

a is said to be the real part of the complex number, and b is said to be the imaginary part
of the complex number. The conjugate of a + bi is a− bi. Self-adjoint means that taking
the conjugate transpose of matrix H returns the same matrix H. Self-adjoint matrices
are Hermitian matrices.
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where diag(C ′C) is a diagonal matrix with dimensions k × k that
represents the number of individuals per clique, Tr(diag(C ′C)) is the
trace of that matrix representing the total sum of individuals in all
cliques. If individuals reside in more than one clique, than it is possible
that Tr(diag(C ′C)) > n. Note that the diagonal of W2 in equation (7)
sums to unity. The maximum value possible in W2 equals 1 when there
is only one clique. When there is more than 1 clique, the maximal value
decreases. The minimal value is 3/Tr(diag(C ′C)) for the minimum
clique.

When there are many cliques, irrespective of their relative size,
the weights in W2 become small. This is potentially problematic, be-
cause the weight matrix is intended to capture the strength of restric-
tions from a clique independent of the number of sources of restrictions
(number of cliques). A measure that is robust against the number of
cliques is

W3 =
1

max(diag(C ′C))
diag(C ′C) (8)

where max(diag(C ′C)) is the size of the largest clique. It attains
a minimum of 3/(n − 1), which implies there are two cliques, one of
which contains 3 nodes and the largest one that contains n− 1 nodes.
This means two nodes in the large clique are connected to a node that
has no Simmelian ties than with those two. It attains a maximum of
1 for the largest clique irrespective of the number of cliques.

Thus, equation (6) weights the importance of individuals within
cliques; equation (7) is a weight for the importance of a clique relative
to all other cliques based on the number of individuals; equation (8)
measures the relative size of a clique compared to the largest clique.
Note however, that W2 ∼ W3, because they only differ in the spec-
ification of a constant that weights diag(C ′C). The relevance of the
different specifications of the weighting matrix follows from the context
in which the measures are applied.

Consider,

Kω = CWC ′. (9)

If W is the identity matrix of dimensions k × k, equation (9) im-
plies Kω = K. Hence, equation (3), Krackhardt’s (1999) measure of
Simmelian ties is a special case of the weighted Simmelian tie measure.

Now, we could use the specification in equation (6) to get

KW1 = CW1C
′. (10)

The hjth-element of equation (10) sums the inverse of sizes of cliques
that contain h and j as members. Only, when the size of a clique
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is assumed to have a meaningful interpretation irrespective of other
cliques’ sizes equation (10) is a useful measure.

As absolute clique-size often is less informative than relative clique-
size researchers might prefer using the specification in equation (7) to
get

KW2 = CW2C
′ (11)

which shows the extend to which two nodes, h and j, have their
Simmelian ties based in large cliques. The maximum value in KW2

is 1, when h and j belong to all cliques. This immediately shows a
disadvantage of this measure, because the maximum value does not
reflect any information on size.

Alternatively, the specification in equation (8) is less dependent on
the number of cliques. This measure gives

KW3 = CW3C
′, (12)

which shows the sum of the weighted joint cliques, where the weight
is the size relative to the largest clique. The sum is equal to the number
of cliques h and j share, when the sizes of all cliques are the same, or
when they share only the largest clique. Smaller values occur when
they share smaller cliques.

Equations (10), (11), and, (12) are examples of weighted Simmelian
tie matrices that allow to incorporate the strength of behavioral re-
strictions of Simmelian ties dependent on the cliques in which they are
embedded. Many other weight matrices could be specified.

3.2 Hermitian Matrices

Let us assume that K in (3) and SQ in (4) both hold relevant informa-
tion about the Simmelian state of a social network, i.e. interpretation
4 is preferred. Hoser and Geyer-Schulz (2005) suggest to use complex
numbers to represent two aspects of a social network (more specifically,
inties and outties). Social network matrices, like K and SQ that each
reflect one facet of the social structure, can similarly be expressed as
one complex matrix, more specifically as an Hermitian matrix. Such
an Hermitian matrix preserves the information available in both ma-
trices, and has some attractive properties for determining Simmelian
brokerage, such as real eigenvalues (see section 5.4). To construct a
Hermitian matrix, first let

M = Mhj =





Khj + SQhj i ∀ h < j
SQhj + Khj i ∀ h > j

0 if h = j
(13)
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be a the complex matrix where by construction in the upper diagonal
the values of K constitute the real part and the values of SQ reflect
the imaginary part, while in the lower diagonal it is vice versa. Note
also that K and SQ are always symmetric, and therefore Mhj = iM̄jh,
where M̄ indicates the complex conjugate of M . Now, Hoser and
Geyer-Schulz (2005) show that multiplying equation (13) with e−i π

4

produces an Hermitian matrix:

H = M e−i π
4 . (14)

Although the values in equation (14) are complex and hence cannot
be rank ordered, H contains all the information that is present in
K and SQ. Hoser and Geyer-Schulz (2005, p.274) discuss properties
of a Hermitian matrix based on in- and outties, which immediately
translate to the setting of Simmelian ties (equation 14). Recall, that
SQhj indicates the number of individuals q, q ε k that have symmetric
ties with both h and j, while Khj indicates the number of cliques that h
and j share. Now if h and j share less cliques than there are individuals
with whom they both have symmetric ties, Khj < SQhj , it follows from
Hoser and Geyer-Schulz (2005, p.274) that the imaginary part of Hhj

has a positive sign, while the imaginary part of Hjh has a negative
sign. Furthermore, the imaginary part of Hhj is 0 if Khj = SQhj .

Note, that

Khj ≤ SQhj (15)

in Simmelian networks, because adding a minimal clique to the number
of cliques h and j share, increases the number of individuals q also with
one. Adding a clique larger than a minimal clique increases the number
of individuals q even more, while the number of cliques increases by one.
This inequality is very useful to derive a relative measure of Simmelian
tie strength, to indicate among how many cliques the Simmelian tie
between j and h is scattered relative to the number of individuals q
that constitute this Simmelian tie. In other words, a measure that
indicates the number of cliques of which the tie between j and h is a
part, relative to the number of indirect (two step) ties between j and
h.

This measure follows from the exponential form of complex num-
bers. It is well known that complex numbers can be expressed in
several manners, for example

a± bi = Re±iθ (16)

where R = (a2 + b2)
1
2 is the absolute value of the complex number.

Furthermore,
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sin(θ) = b/R
cos(θ) = a/R

(17)

which we can solve for θ in the interval [0, 2π), where θ is called the
phase. The phases of the complex numbers in H will be called the
Simmelian phases.

Applying equality (16) to Mhj , we get

Rhj = (K2
hj + SQ2

hj)
1
2 (18)

, and

sin(θ) = SQhj/Rhj

cos(θ) = Khj/Rhj
(19)

Now, if Khj = SQhj , i.e., every q with a Simmelian tie to h and j
constitutes a minimal clique, than

Rhj = Khj

√
2 = SQhj

√
2 (20)

and,

sin(θ) = cos(θ) = SQhj/Rhj = Khj/Rhj =
1
2

√
2 (21)

which implies that in this case, θ = 1
4π. This is a minimum value,

because when SQhj →∞, while Khj = 1, i.e. h and j are members of
one, but very large clique, we have

sin(θhj) = SQhj/Rhj → 1
cos(θhj) = Khj/Rhj → 0 (22)

which implies θhj → 1
2π. Hence, the interval for θ is [ 14π, 1

2π) if we take
Mhj as basis. If we use Hhj than the interval for θHhj

, given equation
(14), becomes [0, 1

4π). Note that the intervals for Mjh and Hjh shift,
although the range remains 1

4π.
If the value of the Simmelian phase associated with the tie between

h and j becomes smaller, than the dependence of h on j to maintain
joint norms in the cliques they are both members of increases. In
fact, the phase could be interpretted as a measure of joint Simmelian
brokerage or in terms of the relative degree of borrowed social capital if
we assume joint Simmelian brokerage is a source of benefits (cf. Burt,
1998). Hence, the Simmelian phase matrix (P ) could be a relative
measure of tie strength. This matrix is skew-symmetric. Here it is
convenient to construct a symmetric matrix P , such that P = Phj =
θHhj

= Pjh.
Hermitian matrix expression of Simmelian ties has other advan-

tages. The eigensystem of H is informative about the state of Sim-
melian brokerage in a social network. In the section on Simmelian
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brokerage, we use the eigenvalues of H to determine the strength of
Simmelian brokerage.

3.3 Hypergraphs

A third method to capture both aspects of Simmelian ties (number of
cliques and number of third parties that constitute the Simmelian tie)
proceeds along the way Krackhardt and Kilduff (2002) have suggested.
As mentioned above, they use hypergraphs to determine the number
of individuals that support a Simmelian tie (see for more information
on hypergraphs Berge, 1989).

Similar to Krackhardt and Kilduff (2002), we could use a hyper-
graph to determine the number of cliques two individuals share. If we
distill from the hypergraph HG1, a n × k clique-membership matrix
comparable to K. Furthermore, as complete triads constitute Sim-
melian ties also a matrix HG2, n× t “complete triad”-member matrix
could be derived comparable to SQ.

This type of matrix is especially useful when the triad is unit of
analysis, for example in analysis of bargaining power and dominant
coalitions. For example, CT = HG′2 ⊗ HG1, a ”complete triad” by
clique matrix, which could be used to determine how often a specific
complete triad is a part of different cliques. Furthermore, T = CT CT ′,
would give a valued complete triad by complete triad matrix, that in-
dicates how often two Simmelian triads are constituents of the same
cliques. Standard measures of influence could than be used to deter-
mine the influence of a complete triad in a network of triads. Relevant,
for our analysis here is that we could use the matrix T in analysis of
Simmelian brokerage we discuss below. Additionally, this type of rea-
soning could be applied to Simmelian dyads, as well as larger sized
clique sub-groups, such as complete tetrads, complete pentads, etc.
However, in the analysis of larger clique subgroups the smaller cliques
are ignored, and strictly speaking information on the Simmelian state
of the social network is lost.

4 Valued Raw Ties

We have not considered valued relations, because the Simmelian tie
theory Krackhardt (1999) refers to is a nominal theory of group influ-
ence. In fact, the strong cohesive groups to which the Simmelian tie
theory refers implies strong relationships between individuals. Weak
relationships are of less importance and classified together with the
non-existent ties. At least as far as definitions of cliques are used to
operationalize this theory.

Therefore the definition of Simmelian ties (Krackhardt, 1998) forces
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researchers to decide on a cut-off value (c)(cf. Doreian, 1969) to deter-
mine what tie strength in the raw data warrants the minimal strength
of a Simmelian tie (ShjZhj = Sv

hj > c). This decision implies establish-
ing the minimum tie strength between two individuals that warrants
the existence of a group according to Simmel’s sociology.

However, if a research focus moves from strong cohesive groups to
brokers of strong cohesive groups it becomes very relevant to assess
weaker ties. As Granovetter (1973) suggest broker relationships are
on average weaker than non-broker relationships. Hence, tie strength
becomes a valuable piece of information for our analysis.

Another reason to consider tie strength in measuring Simmelian
broker positions is that Krackhardt’s (1999) paper positions itself as
an refinement of Burt’s (1992) structural hole theory. This theory al-
lows for valued ties. Although, the paper of Krackhardt surely qualifies
to be an independent new theory comparison to Burt’s original the-
ory remains important. This requires explicit consideration of how to
handle valued ties.

Consideration of tie strength is especially important when we take
interpretation 3 and 4, and use the proposed measures that are based
on the number of individuals q that constitute a Simmelian tie between
h and j. In fact the value of the Simmelian tie between h and j is a
function of the value of ties between h and j, h and q, j and q. Also one
could argue that the value of the ties among the q individuals matter.

Assuming that raw tie strength affects Simmelian tie strength we
have to consider how to use such information in our measures. A
straightforward way to take tie value into account is to take the raw
tie value as Simmelian tie strength (when a tie is indeed Simmelian).
However, what if we have asymmetric raw data. Furthermore, we need
to consider the fact that the Simmelian nature of ties is dependent on
indirect ties. Hence, how to deal with indirect tie strength is a second
issue.

The first issue pertains when Sv
hj 6= Sv

jh. Theoretically one could
argue that a Simmelian tie is as strong as it’s weakest tie and choose
Sv

hj = min(Zhj , Zjh) as Simmelian tie strength. Although, individual
researchers may want to select own decision criteria appropriate for
their specific study setting.

The second issue offers even more discretionary choice to researchers.
Not only do decisions on whether the values of the constituent ties be-
tween h and q, and j and q need to be incorporated, also decisions on
the functional form are required. For example, does one use an addi-
tive, multiplicative or other specification. Substantive interpretation
of the measures should be a guide in choosing one specific measure.

12



5 Simmelian Brokerage Measures

Brokerage refers to an individual network position that presents op-
portunities for extraordinary behavior, but also incurs costs, because
an actor is a link between others that are not directly connected. For
example, cut-points in a network are brokers, individuals with bridg-
ing ties are brokers, but these are all sufficient conditions. A broker
position is due to the fact that an individual is connected to two or
more others who do not share a direct tie. As Burt (1992) emphasizes,
a broker fills a hole between two or more others. Several measures
are available to measure the extent to which someone is in a broker
position.

On the other hand it may useful to know how often a person is
Simmelianly brokered. Imagine when you face a majority clique be-
tween you and another person (see figure 2). While unconnected with
that other person, the clique may extort a formidable force on both to
connect. In other words the stress the clique experiences because the
split between you and that other person forces them into two cliques,
may be put back to you. First, we discuss characteristics of Simmelian
brokers, next we discuss characteristics of the Simmelianly brokered.

j

h

Figure 2: Nodes h and j both face a majority clique. The hole between h
and j divides the group in two cliques.

5.1 Characteristics of the Simmelian Broker

Given a specific Simmelian tie measure the question is how we can
determine whether h brokers the Simmelian tie with j. In other words,
does h has a Simmelian tie with node q who has no Simmelian tie
with j. The procedure Krackhardt (1999) proposes doesn’t allow us
to derive the degree to which individuals hold a Simmelian broker
position. However, given S, it is straightforward to determine the
number of Simmelian ties that h brokers for j, i.e. how many others,
q, are there for which, Shq = 1, and Sjq = 0.

13



Let Sc be the complement of S (Sc= Ic-S, where Ic is the com-
plement of the n × n identity matrix I). As before, let [·] be the
element-wise multiplication operator. Now, whether h brokers j is
given by,

SB = S ⊗ SSc, (23)

while the number of Simmelian ties h brokers for j is

SBQ = S · SSc. (24)

Equation (24) counts all the nodes that h has Simmelian ties with ex-
cluding j, and with whom j has no Simmelian ties. In other words,
equation (24) measures the difference between the total number of indi-
viduals with whom h has Simmelian ties, and the number of individuals
with whom h and j both have a Simmelian tie.

Introducing the valued Simmelian ties in this measure can be done
in different ways. Let us define SV as a valued Simmelian tie. Now
a very straightforward way is to take as value of Simmelian brokerage
the value of the tie it self. We would get

SV B0 = SV · SB. (25)

To indicate the intensity of behavioral restrictions from one tie that
need to be harmonized with other sets of behavioral restrictions. If it
is required that the Simmelian broker measure indicates the tension
between the sets of restrictions another measure is needed. We would
need to include the value of the h ←→ j tie as well as the value of
the h ←→ q ties. The following equation expresses the product of the
value of tie h ←→ j with the sum of the values of ties h ←→ q when
j ←→ q = 0.

SV B1 = SV · SV Sc (26)

An alternative of the product of the valued ties that h brokers for j is
the sum of ties h ←→ j and h ←→ q. This is given by

SV B2 = SV · SB + SV Sc. (27)

Equations (26) and (27) are indicators of the total amount of restric-
tions h has to cope with between j and all other q for Sjq = 0 . A
third measure of interest might be the difference,

SV B3 = SV · SB − SV Sc, (28)

which indicates whether the impact of the restrictions j imposes are
stronger or weaker than the average of the restrictions that the q nodes
impose (Sjq = 0).

These measures are a function of the number of nodes in a network.
To make the measures comparable over networks we formulate relative
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measures based on the maximum value that these measures can take
in a network with n nodes.

It is trivial to determine the maximum tie value in the dichotomous
matrices in equations (1) and (23), which is 1. In equation (4) that
measures Simmelian tie strength as the number of indirect ties between
h and j that constitute their Simmelian tie the maximum tie value is
n − 2. This maximum will be attained if all possible indirect ties are
realized in a one clique network. In that case there will be no Simmelian
broker in the network.

The maximum brokering occurs if h is a broker between j and all
possible others. A Simmelian tie between h and j implies that at least
one other is connected to both these nodes. Therefore the degree of
j, d(j), has a minimum when d(j) = δ(j) = 2. Consequently the
maximum number of ties that h can broker for j in a network with n
nodes is n− 3, if the degree of h, has a maximum when d(i) = ∆(i) =
n− 1.

It is very important to note that this maximum can not be attained
for the ties with every j, rather this is dependent on network size. In
networks that contain an even number of nodes there will be an odd
number of nodes with ties to h, and at least one of them will have to
have ties with two others. Thus, the maximum number of ties that
h could possibly broker for j in a Simmelian network of n individuals
is not automatically the same as the average number of ties h brokers
when she is a maximal broker for all nodes.

More formally, the handshaking lemma states that the sum of de-
grees in a graph is twice the number of edges. Consequently, every
graph has an even number of nodes of odd degree. When ∆(h) (maxi-
mum degree) is odd this implies that there must be a j with odd degree.
As the minimum degree in a Simmelian graph is δ(k) = 2 there must
be a j with degree d(j) = 3 if h is a maximal broker for the other n−2
nodes. In the case where d(i) = n − 1, h can broker only n − 4 ties
for this particular j that has d(j) = 3, while the other q nodes have
d(q) = 2.

So, when n is odd (n− 1 is even) h could broker n− 3 between all
n − 1 other nodes, which is 1

2 [(n − 1)(n − 3)]; when n is even (n − 1
is odd) h could broker n− 3 between n− 2 nodes, and between n− 4
and the 1 node that has d(j) = 3. Hence, the maximum number of
Simmelian ties that h can broker in a network of n nodes is

max
∑

j

SBQhj = d1
2
[(n− 1)(n− 3)− 1]e (29)

where d.e is the ceiling function that rounds the result of the ex-
pression up to nearest integer when the decimal is larger than zero.
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5.2 Characteristics of the Simmelianly Brokered

As discussed above, when j faces a (majority) clique that brokers her
with q, one could argue that she experiences more pressure to bond
with q. Hence, being Simmelianly brokered might also be a source of
role stress. The maximum number of Simmelian brokers that j could
face is n − 2, i.e. all other nodes are brokers between j and q. The
number of times j and q are brokered is given by

SD = S2 · Sc (30)

However, given interpretation 2 it might be more valuable to de-
termine how many nodes q broker h with clique l. This is given by,

F1 = (C ′S)′ · Cc (31)

where Kc is the complement of the clique-member matrix. Hence, F1

is a ’clique-non-member’ matrix (i × k), where the non-members have
at least a Simmelian tie to one clique member.

However, equation (31) does not tell us how many cliques of which
h is not a member and j is a member contain at least one node q
that brokers between h and j (note that we don’t want to identify all
individal q’s nor count the number of q’s). This is given by

F2 = F1[C ′SB ⊗ C ′] · Sc (32)

The first part of equation (32) indicates whether there are nodes in
clique l that have a tie with node h, while h is no member of clique
l. The second part of equation (32) states whether there are nodes
in clique l that broker j, where j is a member of clique l. The third
part ensures there is no Simmelian tie between h and j. Now F2 is a
measure that counts how many cliques of which j is a member, also
contain the Simmelian broker(s) of h and j. Note that this measure is
dependent on the symmetry of Simmelian ties.

The measure in equation (32) quantifies the amount of pressure
on h to close the hole with j, because of the divers set of cliques j
and the Simmelian broker(’s) of h share. If j shares more than one
clique with them, she is to them, at least to some extent, a structural
equivalent Simmelian broker. Assuming that the tie between j and the
Simmelian broker(’s) is beneficial to them (cf., Burt, 1998) it implies
that although j and h have no direct tie j could be a source of stress
to h.

In some instances it could be relevant to count the number of cliques
that include Simmelian brokers q, but neither h nor j. For example,
when we want to assess the pressure on h and j to close the hole
between them. If the broker(s) q belong(s) to many cliques that neither
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(a) The two pairs h-a and j-b both Sim-
melianly broker three others, who are in-
volved in three separate cliques. In turn,
these three Simmelianly broker the two
pairs. Incentives for h and j to close the
hole between them could include reduc-
ing role stress, resisting pressurization to
adopt different norms or to reduce the
bargaining power of the three.

(b) The pairs h-a and j-b face one Sim-
melianly broker, q1, involved in many
different cliques. In all other cliques q1

has a brokering partner that helps sus-
tain more flexible norms for q1 and her-
self. As the pairs have more to lose when
severing their ties to q1 than vice versa,
there are incentives for h and j to estab-
lish a connection.

Figure 3: Examples of Simmelian broker structures that provide incentives
for the Simmelianly brokered to change structure.
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h nor j belong to this evokes an incentive for h and j to close the hole
between them (see figure 3). This measure is given by

F3 = F1[C ′SB ⊗ Cc′ ] ¯ Sc (33)

Equation (33) differs from equation (32) in the second part, where Cc′

(the complement of the clique-membership matrix transposed) replaces
C ′. Thus, instead of summing all the cliques that include both j and
q, equation (33) sums all the cliques that contain q but not j.

If we define F4 as the sum of all cliques that contain brokers between
h and j we have

F4 = F2 + F3 (34)

Similar to our complex valued measure of Simmelian tie strength,
we can derive a measure of Simmelianly brokered tie strength

M2 = M2hj
=





Fthj
+ SDhj i ∀ h < j

SDhj + Fthj
i ∀ h > j
0 if h = j

(35)

where t = 2, 3, 4. However, the properties of M2 will be different
from M (equation 13). Note that the number of cliques a broker be-
longs to is independent of the number of brokers between h and j.
Hence, we can not derive a restriction like inequality (15), and thus no
boundaries on M2 in equation (35).

5.3 Contstraint

The rationale behind Burt’s (1992) measure of brokerage is to identify
the lack of brokerage opportunities. He argues that such lack of en-
trepreneurial opportunities constraints individual behavior. However,
this is not necessarily Simmelian constraint. In his constraint measure,
Burt (1992) discards information about a-symmetries between h and
j, as he uses the sum of the tie from h to j and from j to h. Therefore,
only when we apply constraint to a Simmelian network it might be
used as a measure of lack of Simmelian brokerage.

When we want to analyze the measure of constraint we must be
alert to a few aspects that follow from the fact that Burt (1992) devel-
ops a measure tailored for ego-network data. This has some important
implications when we want to apply this measure to complete networks.
First, we can only apply the constraint measure to ’single component
networks’, i.e. we can only apply it to weakly connected graphs. All
individuals must be at least weakly reachable. Burt (1992) normalizes
the data on the basis of the sum of inties and outties of individual h,
which is the focal individual (or ego). Hence normalization of data
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occurs on the basis of individual specific values. For isolates constraint
of individual is undetermined.

One advantage of using constraint is that it solves the second is-
sue concerning raw valued data by implicitly deciding on how to deal
with indirect values. However, as the other measures discussed above
constraint assumes real numbers. So we can not use the Hermitian
matrices of Simmelian ties. Of course we could use the θ-matrix, P ,
as it contains only real numbers.

5.4 Eigenspectral Analysis

The Simmelian tie measures appropriate to determine Simmelian bro-
kerage in the measures discussed above did not include the Hermitian
matrices. However, this Simmelian tie measure includes most infor-
mation on the Simmelian ties, and hence could be most informative
about the advantages and restrictions posed by brokering these ties.
One measure of brokerage, similar to closeness centrality (see Freeman,
1979), is eigenvector centrality (see Bonacich, 1972, 1987).

Let,
λ g = SV g (36)

where λ is the largest eigenvalue, and g is the associated eigenvector.
Now, based on Bonacich (1987) we can define Bonacich-centrality as

c(α, β) = α (I − β SV )−1SV 1 (37)

where 1 is a column vector of ones and I is an identity matrix. Fur-
thermore, we know that if β → 1/λ that g → c(α, β) (Bonacich, 1987).
One interpretation of c(α, β) that Bonacich (1987) provides is that it
equals closeness centrality of Freeman (1979), in that it increases when
h is connected to others through shorter paths.

Unfortunately, this does not say anything about Simmelian bro-
kerage, because in a complete Simmelian network every node would
have the shortest path to every other node. Therefore, the values in g
should be normalized to the minimum value in g. After normalization
values larger than one imply that node h is a broker, as long as we
assume that SV is a one component network. Otherwise, a measure
for each component could be derived, although comparability between
nodes in different components is no longer valid.

In principle we could let SV in equation (36) be H, an Hermitian
matrix. As the eigenvalues, λH , obtained from H are real, 1/λH exists.
However, the eigenvector components may be complex, which begs a
further explanation about how to interpret the eigenvector values.

Hoser and Geyer-Schulz (2005, p.272) suggest that the largest ab-
solute eigenvector component of the eigenvector associated to the largest
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absolute eigenvalue indicates the most active group member. If we ap-
ply this to H then, the most active group member is the one with
the strongest Simmelian ties, in terms of both the number of cliques
as well as the number of Simmelian ties. The absolute value of the
other eigenvector components reflect the extend to which other group
members have Simmelian ties with the most active member.

Whether the most active member is a Simmelian broker cannot be
inferred from the first eigenvector. However, Hoser and Geyer-Schulz
(2005) show that when an individual has the highest eigenvector com-
ponent value in a second eigenvector this indicates that the individual
is the center in a star-like structure.

In a Simmelian network this implies a Simmelian broker. Assess-
ment of whether individuals hold Simmelian broker positions and to
what extend, first requires an ordering of dominance of substructures
on the basis of absolute eigenvalues. Second, it requires comparison
over different eigenvectors of relative absolute eigenvector component
values (relative with respect to the absolute eigenvector component val-
ues from the same eigenvector). A highest relative absolute eigenvector
component value in two eigenvectors implies Simmelian brokerage.

Furthermore, the phases of eigenvector component values tell us
something about the extend to which others that are in contact with
the most central individual, are structural equivalent Simmelian bro-
kers. Assume that h is the most central Simmelian broker. Whenever
the cliques h that j share are minimal cliques, thus Khj = SQhj ,
the phase of the eigenvector component equals zero of −π Hoser and
Geyer-Schulz (see, 2005). Now if Khj > 1 this subsequently implies
that values of the phase closer to 0 and −π indicate that j is at least
partly a structural equivalent Simmelian broker to h.

6 Conclusion

In this paper many different ways to measure Simmelian tie strength,
Simmelian brokerage and Simmelianly brokered ties have been pre-
sented. This set of measures could be useful to test Simmel’s theory or
theories that were derived from his work (e.g., Krackhardt, 1999). No-
tice that these measures were based on four different interpretations
of one quote of Simmel. The main advantage of the Simmelian tie
strength measures is that they are firmly rooted in a substantive the-
ory. However, this also limits the use of the measures. Researchers are
warned that applying these measures out-side the scope of Simmel’s or
derived theories, begs a solid interpretation.

Based on Hermitian matrices a relative measure of Simmelian tie
strength was developed, which includes information about both the
number of cliques two individuals share, as well as the number of con-
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stituents of their Simmelian tie. In combination with measures that
look at only one facet of Simmelian ties this measure allows to get
a more fine-grained insight in network structural effects on for exam-
ple individual perceptions, attitudes, behavior. The paper shows how
these different tie strength measures can be used to determine to what
extent one individual Simmelianly brokers the other. This is important
when we want to empirically assess Simmelian theories.

Furthermore, the paper suggests some measures to identify the ex-
tent to which individuals are brokered. In the network literature this
has received not much attention. Most work focusses on brokerage or
non-brokerage (e.g., Burt, 2000). However, the counter-effects of bro-
kerage by those who are brokered, in our case Simmelian brokered are
usually not discussed. Although, perhaps less problematic in cross-
sectional research, it seems very important when we look at network
dynamics. The value of all measures discussed here needs to be shown
in empirical research. Further theoretical developments are needed
with respect to the eigenvalue decomposition of Hermitian Simmelian
matrices.
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