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Abstract 
As human beings, we understand and make sense of the social world using social cognition. Social 

cognitions are cognitive processes through which we understand, process, and recall our 

interactions with others. Most agent-based models do not account for social cognition; rather, they 

either provide detailed models of task-related cognition or model many actors and focus on social 

processes. In general, the more cognitively realistic the models, the less they explain human social 

behavior and the more computationally expensive it is to model a single agent. In contrast, in this 

research an agent-based model containing an explicit model of social cognition is developed. 

Results from this model demonstrate that adding social cognition both improves the model 

veridicality and decreases computation costs. 
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Introduction 

  
Scholars define social cognition, broadly, as the way humans understand and process their 

interactions with others (Greenwald & Banaji 1995). This includes interpreting human interaction, 

drawing inferences from spoken and unspoken communication, and developing an understanding 

of group dynamics. Like any notion of cognition, social cognition can be studied at various levels 

of abstraction. At the neurological level, scholars have made inroads in understanding social 

cognition’s biological origins (Frith & Frith 2008). One level “up” on the abstraction hierarchy, 

cognitive psychologists have developed models of how stereotypes are embedded within 

interpretable, but cognitively faithful, mental representations (e.g. Bem 1981, Brashears et al. 

2013). Social psychologists have studied how human actions are a function of culturally shared 

affective meanings, represented as a parsimonious set of numerical values (Heise 2007), and the 

cognitive turn in sociology has wrought about similar sorts of empirical models of cognition and 

culture (Goldberg 2011; Lizardo 2014). 

 

Recent work has begun integrating theory and data at multiple cognitive abstraction levels. For 

example, Schröder and Thagard (2013) integrate biological, cognitive and social psychological 

research into a unified model of how social behavior emerges from a neuropsychological theory 

of semantic pointers. A long-standing question, however, is how to integrate model based theories 

of cognition with model based theories of social structural dynamics (e.g. Carley 1991; Lizardo & 

Strand 2010). One reason why theorizing about this intersection is difficult is that methods to 

capture empirical data for theories linking social structure and cognition are difficult to collect and 

measure (Brashears 2013). An alternative approach is to link cognition and structure via theory 

implemented as computer simulation (e.g. Carley 1991), specifically agent-based models. As 

suggested by Schröder and Thagard (2013 pg. 275), “Multiagent models, simulating 

communication between multiple virtual agents in artificial societies … might one day shed light 

on how stable, consensual structures of affective meaning are generated and maintained in 

cultures.” 

 

The present work focuses on an advancement of an existing, empirically validated agent-based 

model called Construct (Schreiber & Carley 2013) with an approach to social cognition that is 

significantly more faithful to cognition than prior iterations. Interestingly, this increase in 

faithfulness is achieved by more faithfully modeling limitations (rather than features) of human 

cognition. Within the agent-based modeling literature, the proposed approach is novel, but its goals 

are not (Bainbridge et al. 1994). 

 

Socially realistic models tend to be lax in terms of the “cognitive” representation of socio-cognitive 

processes. Extant dynamic network socio-cultural models (e.g., Carley & Ren 2001) may have 

representations of alters in the “cognitions” of agents, and what those alters think or believe, but 

the informative mechanisms of social cognition are deterministically noisy perceptions of the 

simulation’s ground-truth. This is not sufficient because it is not a good model of how we create 

or inform inferences of others. Humans can, and often do, draw and even act on inferences about 

what others think and know merely from their first glance at them, before they have even spoken 

their first word. Thus, agent-based models should be able to represent such a social cognitive 
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mechanism, while still retaining the computational efficiencies of socially realistic, cognitively-

poor agent-based models. 

 

This research addresses this gap in simulation technologies and social theory. on the proposed 

approach connects existing cognitive, social psychological abstractions of social cognition into an 

overarching model of dynamic social structure. While the model described lacks faithfulness to 

many conceptualizations of social cognition, it provides an efficient formalization to span these 

abstraction levels while retaining complexity.  

 

The behavior of this model is examined and validated by examining its capability to replicate a 

number of “stylized facts” (Kaldor 1961) that have been shown to exist empirically. For example, 

the model’s capability to faithfully represent known interactional patterns between members of 

different social groups (Tajfel and Turner 1979) is explored. The model’s ability to accurately 

portray these facts is determined via both quantitative and qualitative evaluation of model output, 

a form of “docking” (Axtell, Axelrod, Epstein, & Cohen 1996). This approach is taken rather than 

simply running more simulations as statistical significance is guaranteed to be achieved by running 

more simulations; whereas, examining qualitative patterns provides better theoretical guidance.  

 

In all cases, model output is compared to an existing agent-based model that provides a less faithful 

and more computationally expensive representation of social cognition. The results of the virtual 

experiment demonstrate that the proposed model provides outputs that better match empirical data. 

Further, a combination of theoretical analysis and experimentation is used to prove that the 

proposed model is computationally more efficient than this prior work. 

  

Related Work 
 

This section contains a brief review of extant approaches to social cognition in agent-based models, 

and lessons that can be learned from these models, as well as prior implementations of a theory of 

mind implemented as transactive memory system. While significant work focuses on social 

cognition and its intersection with social interaction and social structure, the present discussion is 

restricted chiefly to work that is germane to computationally modeling these processes. 

 

Modeling Social Behavior 
 

Several models have employed aspects of social cognition to examine inter-agent behavior without 

ascribing to a rigorous general cognitive model. For example, De Weerd, Verbrugge, and Verheij 

(2013) showed the competitive advantage of modeling an adversary’s thought processes. 

Chavalarias (2005) used game-theoretic models to explore how imitation behaviors can lead to 

social differentiation. Paul, Pickett, Sherman, and Schank (2012) used Optimal Distinctiveness 

Theory (Brewer 1991) to inform a Schelling-esque model (1971) of how different social 

configurations could stabilize, showing that a social space’s initial configuration strongly affects 

the persistent patterns of group identity. Friedkin (2006) demonstrated the movement of 

individual’s to group norms via a social influence process on opinion formation. 
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Deep models of individual cognition, such as those implemented in Soar (Laird 2012) or ACT-R 

(Anderson et al. 2004), are rarely implemented in situations where inter-agent communication is 

required, let alone collaboration or coordination. When they are, model developers create specific 

code and working memory elements that represent alters but there are not explicit architectural 

mechanisms for social cognition or theory of mind. Examples of domain-specific implementations 

include inferences on enemy locations in adversarial agent-simulations (Best, Lebiere, & 

Scarpinatto 2002) or assigning tasks to flight squadron members (Jones et al. 1999). There has 

been interesting work placing ACT-R modeling within an organizational context (Helmhout 

2006). However, such models are computationally infeasible to utilize when one wishes to perform 

simulations of large numbers of agents. Recent cognitive models with some social cognition scale 

successfully into the hundreds of agents (Kaulakis et al. 2012). 

 

Prior Implementations of Theory of Mind 
 

The proposed model is a formalization of a theory of mind, an element of general social cognition, 

to improve agent-based simulation of human actors. At the core of this theory of mind is a multi-

level transactive memory system. Transactive memory is an explanatory mechanism of “how 

groups process and structure information” (Wegner 1987). Wegner suggests that humans both 

encode information internally and encode the location of external information resources. These 

external resources can include notebooks, file cabinets, databases, and, most importantly, other 

human beings. A person may not know, for example, how to diagnose a problem with a car, but 

that same person may know that a mechanic is a good starting point. This encoding capacity is 

essential to both what allows groups to be efficient, and allows people to specialize usefully in 

their work. 

 

Prior simulation efforts have modeled this human capacity as a three-element tuple, ijs. Each agent 

i has for alter j a perception of alter j‘s knowledge of information set s. Palazzolo and his 

collaborators (2006) had a continuous value (from 0 to 1) for this three-element tuple, representing 

perceived likelihood of an alter having information of use related to that knowledge set. Carley 

and Ren (2001) represented each sub-element in each agent’s representation of alters as a binary. 

Thus, agents may believe an agent knows or does not know a specific piece of knowledge (an 

information element in one or more sets s). Construct (Carley 1991), the agent-based dynamic-

network simulation model extended herein, integrates  the model of transactive memory as 

described in Carley and Ren (2001), and then further extends it to account for multiple modes of 

interaction and diverse communication modalities (Carley, Martin, & Hirshman 2009). 

 

These prior efforts are functional, but are necessarily scale limited. As the agent population 

increases, the computer memory requirements increase exponentially. However, humans are able 

to function socially despite being conceptually aware of thousands, if not millions, of other human 

beings. Consistent with the Carnegie School (Cyert & March 1963; March & Simon 1958; Simon 

1957) theoretical position the proposed model is predicated on the assumption that human memory 

capacity is not functionally infinite. Instead, it is argued that humans are boundedly rational 

(Simon, 1991) and must have a mechanism that conserves memory capacity yet retains 

functionality. 
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Theoretical Approach: The Generalized Other to inform 

Transactive Memory 
 

As a candidate mechanism, humans are modeled as being capable of holding detailed transactive 

memory representations for a limited number of people. For others, humans hold coarser 

representations inferred from group membership. In other words, humans hold stereotypes, or 

prejudices, that inform their perceptions of what others know. While the terms stereotype and 

prejudice have functionally distinct meanings in the social psychological literature (Hewstone et 

al. 2002), the concept that group memberships inform one individual’s perceptions of others is a 

core component of social cognition.  

 

Mead’s (1925) Generalized Other is a foundational root in the study of human stereotyping. Mead 

argued that people make and retain persistent inferential statements on ethical behavior, such as 

“people of type X tend to do thing Y”. Multiple such statements may be active at the same time, 

and in aggregate, Mead called these the “Generalized Other’. People, Mead claimed, use the 

Generalized Other to regulate their own behavior by acting in compliance with the statements 

applicable to themselves. People can also use the Generalized Other to understand the behavior of 

others. It is assumed that Mead would also be comfortable with the idea that people can make 

similar inferential statements, “people of type X tend to know or believe thing Y” for he wrote 

(1925, pg. 275), “[s]ocial control depends, then, upon the degree to which the individuals in society 

are able to assume the attitudes of others who are involved with them in common endeavor.”  

 

From Mead’s work springs a rich collection of psychological, sociological and social 

psychological research on stereotypes. For example, Stryker’s (1980; 2008) sociological and 

structural take on symbolic interactionism definitively argues that humans perform stereotyping 

on different “types” of others. From a psychological perspective, many scholars have addressed 

an immediate following question, how are “types” of people identified? Mead suggested that there 

exists a large common group, called in his work “society”, but also that humans concurrently 

maintained additional inferential statements for all relevant types. In the proposed model, 

embodies the theory that external, that is, clearly visible group memberships may be sufficient to 

distinguish “types”. Thus, types are a fixed and uniformly agreed upon set, which is a 

simplification of human experience. This representation is a formalization of the “minimal” group 

paradigm suggested by Tajfel, Turner and their colleagues (1979; 1981). In the paradigm, group 

memberships are clearly and universally defined (by, e.g., the color of one’s shirt in an 

experimental setting; see Tajfel, Billig, Bundy, and Flament 1971). Importantly, this representation 

is a limitation of this implementation, not the overall model’s theoretical underpinnings. Even 

including this limitation, the salience and precise representations of different group memberships 

are informed entirely from individual experience. Thus, each agent may have its own wildly 

different understanding of its social context. 

 

From the literature referenced above, three transactive memory tiers essential to the proposed 

multi-level implementation are identifiable: 

 

- Personal: I know this individual and have specific perceptions about what they do and 

do not know. 
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- Group: I do not know this individual, but I have perceptions about groups to which I 

believe they belong. 

- Global: I do not know this individual, and I do not have perceptions about the groups 

to which I believe they belong. 

-  

Scholars often discuss both the Generalized Other and stereotyping within schema theory’s 

(Rumelhart 1978; 1980) cognitive framework. In this context, a schema represents a memory 

structure for retaining generic concepts. In schema theory, each individual has a hierarchy of 

schema applicable to specific environmental conditions. Schemata that help us understand who 

other people are and what they are likely to know “Social Schema” (Kuethe 1962). These produced 

social schema are culturally dependent (Little 1968), but their production mechanism is expected 

to be endemic to the human condition and not to be culturally dependent.  

 

In schema theory, environmental cues determine schema availability. Individuals use available 

schema to make inferences about their environment. Unavailable schema do not burden the 

individual’s resources. In cognitive agent systems (Anderson 1996), schema-like representations 

have been used to produce human-like cognition as agents learn tasks, and agents may have many 

schema (implemented as production rules, a specific form of schema that use if-then structures) 

active simultaneously. Work by Duong and Reilly (1995) used a hierarchy of neural-networks to 

implement schema theory and model Mead’s Symbolic Interactionism (Mead 1925), producing a 

hiring model showing racial bias.  

 

Anderson and his collaborators (2004) suggest, and give empirical evidence, that chunks of human 

memory are “activated” when they are used. This activation decays over time with non-use. An 

actor’s schemas can be associated with an “activation score”, allowing one to determine the 

accessibility of the schema to the agent. These activation scores, according to Anderson, determine 

if an agent is able to recall a chunk. If the agent cannot recall the chunk, it must do without it.  

 

The proposed model takes advantage of this approach’s computational tractability, but changes the 

activated chunk’s granularity. Rather than each chunk representing a single schema-object, of 

which there are many per alter, each chunk represents a specific alter or group. Each interaction 

with an alter is treated as an activation-event, and thus alters (and their groups), which are 

frequently contacted, will have high activation scores. An agent may also receive information 

about an alter or group, and this is also an activation-event. Thus, what schema are used to inform 

behavior are contextually dependent on recent activities and current social structure, an important 

aspect to realistic social cognition (Edmonds 2014). Brashears (2013) showed that social schema 

are active in understanding group structures.  This research goes further to suggest that schemas 

are necessary to conserve limited cognitive resources and allow humans to interact intelligently (if 

heuristically) with unknown others. 

 

For more information on the approach’s implementation, see Joseph, Morgan, Martin, and Carley 

(2014). The remainder of the paper is organized as follows.  First, the utility of a multi-level 

transactive memory system is reviewed. Then two virtual experiments for assessment are outlined.  

Then a proof of the computational savings from a multi-level system is provided. Finally, results 

from the virtual experiments are provided, followed by a discussion of limitations and potential 

future work. The results suggest that the multi-level implementation improves model fidelity, 
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conserve’s the agent’s limited cognitive resources, and improves the model’s sensitivity to 

important initial conditions. 

 

Modelable Social Phenomena 
 

The proposed model, Construct-SC, is an extension of Construct (Carley et al. 2009) to include a 

social-cognition adaptation of aforementioned multi-level transactive memory system. Construct 

is a network-centric agent-based simulation of knowledge diffusion within groups. Agents 

communicate information to other agents. Agents may forget knowledge they possess. How 

information diffuses within a group depends on multiple factors: the preferences of individual 

agents, the initial knowledge of each agent, and the social ties between those agents. In Construct, 

a central tenant is that as individuals learn and change what they know, they also change their 

position in the social network, and thus their most likely interaction partners. There are multiple 

biases for preference for interaction, including: 

 

- Homophily, agents prefer interacting with people like themselves (McPherson, Smith-

Lovin, & Cook 2001) 

- Expertise, agents prefer interacting with people with valuable knowledge (Carley & 

Hill 2001) 

- Propinquity, agents prefer interacting with people nearby (Allen 1984) 

 

Both homophily and expertise require perceptions of people’s knowledge. Earlier iterations of 

Construct used an error-prone and stochastic perception of ground-truth. However, later work with 

Construct implemented transactive memory as outlined in Carley and Ren (2001). Agents maintain 

persistent alter representations as transactive memory vectors. Agent interactions inform these 

vectors. In Construct-SC (Social Cognition), the Construct system is modified by: 

 

- Adding transactive memory vectors for groups, of similar form to those for alters; 

- Assigning transactive memory vectors activation scores which change over time; 

- Allowing transactive memory vectors to be lost (or “forgotten”) through disuse. 

 

In both Construct-SC and Construct’s transactive memory system (Carley & Ren 2001), a 

“schema” is a transactive memory vector – a series of K bits, where K represents the number of 

knowledge pieces, or “facts”, in the system. Each bit represents the ego’s perception of the alter’s, 

group’s, or Generalized Other’s knowledge of a fact. While Construct has a single vector for each 

alter, in Construct-SC these schemas are arranged hierarchically. An ego determines what an alter 

knows by starting at the personal level. If that schema is activated above the threshold, then the 

agent uses the alter’s transactive memory vector. If not, the agent will “construct” the alter’s 

knowledge vector from the relevant group schema. If the alter belongs to no relevant groups, then 

the agent uses the Generalized Other’s transactive memory vector. 

 

With these changes, Construct-SC should be able to model social and human phenomena that 

Construct could not. Construct-SC should also replicate results from Construct. In Table 1, a set 

of observations on human social behavior are presented.  For each of these observations, an “X” 

is used to denote whether that observation is reflected in  Construct or Construct-SC respectively. 
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Table 1. Stylized facts of Construct and Construct-SC 

Designed Citation Construct Construct-SC 
Individuals interact with others.  X X 

People interact with others based on their 

perceptions of them. 

 X X 

Individuals reason about a generalized other. Mead 1925  X 

Individuals have perceptions of groups. Stryker 1980  X 

Perceptions of unknown individuals are based 

on their known group affiliations. 

Tajfel and Turner 1979  X 

Group perceptions can be informed by 

interactions with members of that group. 

Carley 1991  X 

    

Emergent Citation Construct Construct-SC 
Diffusion of new information follows an S-

Shaped Curve. 

Rogers 2010 X X 

Heterogeneous groups are more likely to 

discover novel information from outside the 

group than are homophilous groups. 

Granovetter 1983; 2005 X X 

  X X 

Groups with some heterogeneity outperform 

purely homophilous groups. 

Ancona & Caldwell 1992 X X 

Individuals are more likely to interact in-

group than out-group. 

Blau 1977; Tajfel & 

Turner 1979 

X X 

The improvement in task competency of 

cliquish groups will have significantly more 

marginal variation over time. 

West, Barron, Dowsett, 

& Newton 1999 

 X 

Perceptions of others are often based upon 

things such as expected roles, social norms, 

and social categorizations. 

Greenwald & Banaji 

1995; Heise 1979; 2007 

 X 

Arbitrary and even meaningless distinctions 

between groups can trigger a tendency to favor 

one's own group at the expense of others. 

Tajfel et al. 1971  X 

Transactive memory should preserve 

computational resources. 

Wegner 1995  X 

 

Those factors that are “designed” are actual mechanisms built in to the model implementation. 

Those factors that are “emergent” are results that emerge from the model in the virtual experiments. 

 

As Table 1 documents, Construct-SC is a formalized theory that allows for a richer representation 

of the social group phenomena. Table 1 is used to inform the construction and simulation outputs 

of interest for the primary virtual experiment outlined in the next section.  

 

Virtual Experiment Design 
 

Two different virtual experiments inform the results. Virtual Experiment 1 focuses on the question 

“Is this a better model of human behavior?”. Virtual Experiment 2 is used to address the quetion 

“Is this a more computationally efficient implementation of human behavior?”. 
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Virtual Experiment One: Modeling Human Behavior 
 

In the first experiment, Construct-SC is evaluated as a model of human behavior.  It is anticipated 

that Construct-SC will model successfully the stylized facts from Table 1. For this experiment, the 

agent count, the knowledge count, the number of simulation turns, and the task-size (in bits) for 

performance evaluation are kept constant.  

 

Several factors are manipulated that influence the distribution of knowledge. One of these is the 

group structure of the social space. Group structure is controlled by two variables: 1) whether there 

was a single dominant social group, or whether all groups were the same size, and 2) the disparity 

in size between the dominant and non-dominant groups (if there was a dominant group). 

 

The distribution of knowledge across groups is also varied. Three knowledge distributions are 

considered: 1) Group-Based, 2) Random, and 3) Fuzzy Groups. In the Group-Based condition, 

knowledge is distributed based on group affiliation. Each group’s size, relative to the total number 

of agents, indicates how many of the knowledge bits ‘belonged’ to the group, and the group’s 

knowledge bits are assigned stochastically to group member. In the Random condition, knowledge 

is distributed without reference to group membership. In the Fuzzy Group condition,  knowledge 

is distributed primarily, but not entirely, based on group membership. 

 

The social space is also differentiated by whether individuals may be members of multiple groups. 

In the “single” condition, all individuals are members of exactly one group. In the “multiple” 

condition, all individuals are initialized as members of a single group, and then are given a random 

chance (0.25^(number of group-memberships)) to be a member of an additional group, with the 

new group chosen at random from groups to which that individual does not already belong. The 

first group, Group 0, is assumed to be highly interstitial: a person is twice as likely to be assigned 

membership to Group 0 as other groups. 

 

Individuals in the social scene may be more or less driven by desire for interaction with others like 

themselves (Homophily), or with people with rare knowledge (Expertise). Frequently, these drives 

are co-present in people (Carley, Lee, & Krackhardt 2002), as shown, for example, by Valente 

(1996). Three settings are used for these values: 1) “100/0” where all interaction is driven by 

homophily preference; 2) “60/40” where homophily preference is dominant to expertise 

preference; and 3) “0/100” where all interaction is driven by expertise preference. 

 

To contrast Construct and Construct-SC, two variants of the Transactive memory model (TM-

Model) are used. The experimental condition “Full” represents the earlier implementation of 

Construct’s Transactive Memory. The condition “Multi-Level” represents Construct-SC’s new 

Transactive Memory implementation. 

 

Agents are evaluated on several dependent variables, including in-group interaction probability, 

out-group interaction probability, knowledge diffusion over time, and task performance over time.  

In-group interaction probability is the average, across agents, of the summation of probabilities of 

interacting with fellow group members.  Out-group interaction probability is, similarly, the 
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average, across agents, of the summation of probabilities of interacting with alters outside the 

group. Knowledge diffusion is the sum of each agent’s knowledge-bit count.  Task performance 

is evaluated using a binary classification task (Carley 1992). In a binary classification task, agent 

knowledge is used as a mask over a binary string, and the task for the agent is to successfully guess 

whether a string is more 1s or 0s. To evaluate task performance,   the set of knowledge bits is 

divided into ten contiguous blocks, each representing a task. Each turn, bits required per task are 

drawn at random from each block. An agent’s score each turn is the percentage of tasks they 

completed correctly.The first virtual experiment’s factors and constants are presented in Table 2. 

 

 

Table 2. Virtual Experiment 1 - comparing behavior versus Full (Construct) and Multi-

Level (Construct-SC) implementations of transactive memory 

Factors Values # of Values 

Group Size and Number Single-Dominant (60%, Large), Single-Dominant 

(60%, Small), All-Equal (Large), All-Equal (Small) 

 

4 

Knowledge Distribution 

(Random, Group-

Based) 

Group-Based (0.01, .3), Random (.1, 0.0), Fuzzy 

Groups (0.03, .25) 

 

3 

Group Membership Single, Multiple 

 

2 

Interaction Drives 

(Homophily/Expertise) 

100/0, 60/40, 0/100 

 

3 

Transactive Memory Full, Multi-Level 2 

 Total Combinations 144 

 Runs Per Condition 10 

 Total Runs 1440 

   

Constants   

Agent Count 200  

Knowledge Count 400  

Sub-Tasks 10  

Time 800  

   

Outcomes   

In-Group Interaction 

Probability 

Average of each agent’s summed probabilities of 

interacting in-group 

 

Out-Group Interaction 

Probability  

Average of each agent’s summed probabilities of 

interacting out-group 

 

Knowledge Diffusion Summation of each agent’s knowledge-bit count  

Task Competencies Binary Task Classification (see above)  
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Table 3. Virtual Experiment 2 - comparing run-time results 

Factors Values # of Values 

Agent Count 1000, 5000, 10000, 15000 4 

Transactive Memory Full, Multi-Level 2 

 Total Combinations 8 

 Runs Per Condition 10 

 Total Runs 80 

   

Constants   

Group Size and Number All-Equal  

Knowledge Distribution 

(Random, Group-Based) 

Fuzzy Groups (0.03, .25)  

Group Membership Multiple  

Interaction Drives 

(Homophily/Expertise) 

60/40  

Knowledge Count 1000  

Sub-Tasks 10  

Time 365  

   

Outcomes   

Run Time Average turn length in seconds per agent  

 

Virtual Experiment Two: Empirical Observation of Achieved 

Efficiencies 

 

Virtual Experiment 2, described in Table 3, is used to evaluate Construct and Construct-SC’s run-

time costs. It is anticipated that the simulations using Construct-SC will have a much faster run-

time.  A formal analysis of Construct-SC’s memory complexity is provided next; however, 

evaluating Construct-SC’s time-complexity is highly dependent on a modeler’s choices.  Thus  

Virtual Experiment 2 was run to demonstrate achieved efficiencies for typical usage based on prior 

experience.  For these experiments, the group structures, knowledge distribution, interaction 

drives, knowledge count, sub-task count, time, and machine configuration are controlled. A 

powerful machine with 60 processors and 0.5 TB of memory to minimize noise in run-time results 

was used to run the virtual experiment. In each case, Construct was run on a single thread. 

 

The number of agents (agent count) in the simulation world, and the transactive memory model 

were varied.  The primary outcome variable was run-time, which was measured as average turn 

length per agent to make the results more easily comparable across the wide variation in number 

of agents. 
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Figure 1. Information Diffusion in Construct and Construct-SC. Both Models predict overall 

diffusion of information at similar rates across other variables.  

 

Results 
 

Following the pattern established by the virtual experiments, the results are presented in sub-

sections, related to the modeling of human behavior and to run-time results. 

 

An Improved Model of Human Behavior 
 

By improving the theory of mind implementation over that Construct, it is anticipated that the 

improved model, Construct-SC, will better represent the stylized facts described in Table 1.  The 

results demonstrate that adding social cognition is a theoretical win; i.e. the model with improved 

theory of mind produces results which better match Table 1’s stylized facts.  
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Figure 2. Construct-SC actors prefer to interact in-group unless only rare knowledge is 

valued and group membership is arbitrary 

 

 

In this section, Table 1 is used to guide the analysis of the results. First, both models should 

replicate information diffusion’s S-Shaped curve. The results in Figure 1, demonstrate that both 

models predict similar levels of information diffusion over time across all condition groups. 

Clearly, the curves represented do not show the traditional “bottom” of the expected S-shaped 

curve, but otherwise follow the expected pattern. The apparent difference from the traditional S-

shaped curve, however, can be readily attributed to the initial conditions of the model, which was 

set to ensure a reasonable run time. More specifically, because initial information density was set 

high, simulations essentially skip the ‘discovery’ phase for most knowledge bits. As is 

demonstrated, when considering multiple knowledge bits together to measure task performance, 

the familiar S-shaped curve returns (Figure 3). 

 

Construct-SC allows for group reasoning and group biases. People often privilege interaction with 

people within their social groups, even when those groups do not imply shared knowledge or 

understanding. Figure 2 is a series of line plots, showing the distribution of in-group bias with 

Construct and Construct-SC compared in every sub-graph. The separate columns represent how 

knowledge is distributed a priori; the separate rows represent the weighting of the expertise drive. 

Each sub-graph represents cumulative bias towards the in-group, with the X-axis being time. As 

shown in Figure 2, Construct-SC agents prefer to interact more with members of their own group 

than Construct agents in nearly all cases. The exceptions occur in the somewhat unlikely social 

situation where only the expertise drive is active, and thus only rare knowledge is valued. In the  
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Figure 3. Task performance of different groups are compared over time. Important social 

structures of the simulation drive variation in Construct-SC task adoption outcomes. 

 

fuzzy-group knowledge distribution, Construct-SC agents find value in interacting outside the 

group, at first, until enough members of their own group gain rare knowledge. In the random-case, 

Construct-SC agents tend to attribute knowledge they already possess to in-group members which 

does not offer any group cohesion. 

 

In task performance, it is anticipated that there will be variation over time in highly cliquish groups 

(West, et. al 1999), i.e., groups that prefer to interact with the in-group over interacting with people 

outside the group. Based on the findings from Figure 2, it is assumed that groups that are entirely 

homophily-driven (the top row) fit this definition. Construct-SC agents are, in general, more 

cliquish.  

 

Figure 3 is a series of line plots, showing the distribution of task performance with the Construct 

and Construct-SC compared in every sub-graph. Two separate graphs are presented, one where 

agents can be members of multiple groups, and one where they can only be a member of a single 

group. In both cases, every agent is a member of at least one group. Within each graph, the separate 

columns represent knowledge distribution, and the separate rows represent the weighting of the 

expertise drive. Each sub-graph represents the task performance of the population, with the Y-Axis 

being the summation of all agents’ capabilities to complete a large complicated task. The task was  



 

14 

 

 

Figure 4. Variation in task performance outcomes over time - Construct-SC shows a more 

pronounced U-Shape curve over time in all group-based knowledge distributions. 

 

defined as follows. First the knowledge was divided into ten parts using contiguous sets of 

knowledge bits. Then the bits required for each sub-task at each point in time were drawn from all 

bits related to that sub-task. Thus, performance on each task should be expected to vary over time, 

but as agents gain knowledge, they will become better able to contribute to the overall task, until 

nearly every agent can perform nearly all sub-tasks involved. The X-axis indicates time. Construct-

SC allows for much more variation in outcomes, and that variation is due to the simulation’s social 

structure. 

 

Figure 3 shows that simulation outcomes are sensitive to social structure.  The more agents are 

motivated by expertise, the faster performance tends to improve. Knowledge distributed a priori 

by group tends to diffuse slower, probably due to in-group biases shown in Figure 2. Construct-

SC agents, with their stronger in-group biases in general, tend to distribute task-knowledge more 

slowly. Multi-group memberships mitigate the effect.  

 

Figure 4 shows that outcome metric variations are different between Construct and Construct-SC. 

Construct-SC’s task performance outcome variations have a distinctive U-shape curve over time 

when knowledge is not randomly distributed – this pattern is muted in original Construct. Note 

that this is not merely the addition of more noise to the simulation model – instead the perceived 

additional variability is, in the outcome variable, structural in nature. When group membership is 

salient to performance (because knowledge is distributed through group memberships), there is 

low variability in performance both at the beginning and at the end of the simulation, i.e. at both  

 



 

15 

 

Table 4. Symbols used in analysis of the computational complexity 

Symbol Meaning 

| | Number of instances (e.g. |SO-TMV|) is the number of instances in the SO-

TMV 

G Number of groups 

N Number of agents 

K  Number of knowledge bits 

SOTM Agent perception of individuals (Significant Others Transactive Memory) 

GTM Agent perception of groups (Group Transactive Memory) 

NIntPerTurn Number of interactions an agent can have per turn 

Thresh Threshold of activation at which agent “forgets” an agent or group 

 

 

observed areas of the diffusion curve. . Rather than adding noise, social cognition reduces variation 

and so noise when group membership is salient. 

 

Better Behavior, Better Performance 
 

In general, as models become more veridical they become more computationally complex. In other 

words, the better the model of cognition, the longer it takes to simulate group behavior, and the 

more computer resources are required. In this section, Construct-SC’s computational performance 

is analyzed. The results demonstrate that adding a multi-level theory of mind is a computational 

win; i.e. to model the same number of agents in Construct-SC versus Construct requires less 

memory and runs faster.  

 

From a computational perspective, the new mechanism’s chief advantage is that it reduces the 

computer memory required to maintain transactive memory by implementing a variant of ACT-

R’s activation equations. In this section, a formal proof of this fact is provided, followed by an 

empirical demonstration that this space saving does not come at the cost of the simulation’s run-

time speed. These memory and run-times make it feasible to run much larger simulations in 

Construct-SC. Table 4 provides an overview of the symbols used in the derivations in this section.  

 

In Construct-SC the implementation of ACT-R’s activation equations are a variant of Petrov’s 

(2006) approximation. In this variant, agents “forget” information if its activation score is below 

a threshold. In Construct-SC, agents “forget” their perceptions, or transactive memory, of other 

agents and groups if they have not interacted with them recently. “Time” is represented by 

simulation turns, and thus bounds can be set on the amount of time before an agent “forgets” based 

on the number of simulation turns that have elapsed and a particular setting of the variables in the 

ACT-R equation. The following derivation utilizes this idea to bound the model’s memory 

requirements. 

 

In Table 4, the variables needed to calculate the algorithm’s complexity are defined. Then in Table 

5, the major mechanisms for Construct and Construct-SC are compared – defining their space 

complexity. As is clear, retaining perceptions of alters dominates the space complexity in 

Construct. Assuming that there will be many more agents than groups (N > G), the same is true of  
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Table 5. Computational complexity per agent of the social cognitive system 

Object Space Complexity- 

Construct 

Space Complexity- Construct-

SC 

Agent Knowledge O(NK) O(NK) 

Alter to Group Matrix N/A O(NG) 

Activation Mechanism N/A O(N*(|SOTM| + |GTM|)) 

Perceptions of others’ 

knowledge 

O(N2K) O(N*(|SOTM|+|GTM|)*K) 

Total O(N2K) O(max(NG, 

N*(|SOTM|+|GTM|)*K) 

 

Construct-SC. The primary question that must be answered is thus the size of |SOTM| + |GTM| 

relative to N, as this will identify the space savings obtained. 

 

To make this determination, assume that |GTM| == G, and again that G is small relative to N for 

this simulation model. In other words, assume that the number of groups that an agent can be in is 

insignificant as compared to the number of agents. The primary concern now becomes comparing 

|SOTM| and N. Assume that an agent has interacted with another agent T turns ago. Then, given 

the activation equations described by Petrov (2006) and the mechanism described, the following 

must be true for the agent to not “forget” the alter (where K is some initial, small, constant 

activation value to ensure Equation 1 is defined when T =0): 

 

 
(1) 

 

With some straightforward algebraic manipulation, results in an equation which defines the 

number of time steps, or simulation turns before which an agent will “forget” an alter that it 

interacted with once, T turns ago: 

 

 
(2) 

 

If an agent interacts with an alter only once, T turns ago, then the agent will forget the alter after a 

number of turns determined by the threshold parameter. In the pathological case where an alter 

interacts with NIntPerTurn unique alters each turn, then |SOTM| will be the minimum of N or the 

product NIntPerTurn * Equation 2. Modelers can tune parameters such that there are no space 

savings, where there are few agents and many allowed interactions. However, even at the most 

loose settings utilized in Virtual Experiment 2, where K=.1, NIntPerTurn=2, Thresh=-1, then 

|SOTM| is at most 15 agents large. This value is constant and does not depend on N, thus Construct-

SC, with realistic parameter settings, is an order of magnitude (in N) more space efficient than 

Construct. 

 

A formal analysis of Construct-SC’s time complexity is not provided because such an analysis 

would be dependent on the modeler’s choices, and thus could not be broadly generalized. Instead, 

an empirical assessment is provided as guidance, via Virtual Experiment 2, of a typical use of  



 

17 

 

 

Figure 5. Construct-SC takes less time to run for a similar number of agents. 

Construct, noting the same limitation. In Virtual Experiment 2, knowledge sizes were kept 

constant, but the number of agents was varied (from 1000 to 15,000). Figure 5 above shows a run-

time comparison of Construct and Construct-SC. Construct-SC runs faster across all population 

sizes. Note that Construct-SC’s time complexity does depend on the number of groups, but it is 

anticipated that the number used in Virtual Experiment 2 (10 groups) are typical of usage. 

 

Discussion 
 

In implementing Construct-SC, a multi-level model of group-based inferences, we see that 

stereotypes preserve resources and improve model behavior compared to models where agents 

retain transactive memory of all potential alters. Specifically, the model with group-based 

inferences: 
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- Allows for arbitrary groupings of agents to significantly impact interaction between 

agents; 

- Shows significant in-group bias; 

- Supports wider variances in task performance, with that variance better supported by 

the structure of the knowledge space; 

- Runs faster and requires less memory.  

-  

Using the stylized facts from Table 1, the results of Virtual Experiment 1 are summarized in 

Table 6. 

 

Limiting the ability of agents to retain perceptions of alters and providing a group-based inference 

mechanism, resulted in agent behavior that is more true to established “stylized facts”. This 

suggests that people behave the way they do because they have finite cognitive resources which 

forces them to retain group-level schemas for actors they do not personally know. This research 

finding recalls the variety of work done with cognitive biases – and how these biases inform both 

extant social structures and how network researchers collect data on these structures. This work 

suggests an approach towards modeling the rich variety of socially relevant cognitive biases. 

 

Table 6. Summarization of Results Using the Stylized Facts 

Emergent Phenomenon Citation Construct Construct-SC 
Diffusion of new information follows an S-

Shaped Curve. 
Rogers 2010 Fig.1, Fig. 3 Fig.1, Fig. 3 

Heterogeneous groups are more likely to 

discover novel information from outside the 

group than are homophilous groups. 

Granovetter 1983; 2005 Fig.2 Fig.2 

Groups with some heterogeneity 

outperform purely homophilous groups. 

 

Ancona & Caldwell 1992 Expertise: Fig.3 
Expertise: Fig.3 

K-Distro: Fig.3 

Individuals are more likely to interact in-

group than out-group. 

Blau 1977; Tajfel & 

Turner 1979 

Homophily: 

Fig.2 

All except 

Random+/Expertise: 

Fig. 2 

The improvement in task competency of 

cliquish groups will have significantly more 

marginal variation over time. 

 

West, Barron, Dowsett, & 

Newton 1999 
 Fig. 4 

Our perceptions of other people are often 

based upon things such as expected roles, 

social norms, and social categorizations. 

 

Greenwald & Banaji 

1995; Heise 1979; 2007 
 Fig.2 

Arbitrary and even meaningless 

distinctions between groups can trigger a 

tendency to favor one's own group at the 

expense of others. 

 

Tajfel et al. 1971  Fig.2 

Transactive memory should preserve 

computational resources. 
Wegner 1995  

Table 4 

Fig.5 
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Although a significant advancement in agent modeling, this work still has several limitations. First, 

and most significantly, the model of groups could be improved in a variety of ways. In Construct-

SC groups are universal and group membership is immediately visible to others. This 

implementation of groups is best fit for superficial grouping characteristics, such as coarse-grained 

representations of age, gender and race. A more advanced group model would include spontaneous 

group formation, a process by which agents infer group membership, and the ability for agents to 

leave groups. Despite these limitations, the relevance of groups in the current model is not uniform 

to every agent; it is based on who these actors tend to interact with. Thus, the abstractions of groups 

themselves may be lost over time. 

 

This model could be further explored by being placed in a specific interesting context, such as a 

small town or village with well-defined demographics; where group sizes are not roughly 

equivalent, and membership in multiple groups is constant. Comparing the spread of knowledge 

and beliefs in Construct and Construct-SC in such a context, with perhaps a comparison to a 

historical situation of interest, would be worthwhile. 

 

The group inference mechanisms assume that these group inferences are generally, if not perfectly, 

accurate. This model ignores the ability of agents to select media and other sources of information 

that bias their inferences. However, this model does allow for agents to have more or less personal 

bias in their understanding of alters, but this does not entirely overcome the issue of bias in media 

sources. 

 

The ability to use group membership to inform an implemented theory of mind is a useful extension 

to the agent literature that other models could learn from. The results demonstrate that group 

stereotypes allow agents to conserve resources, make decisions faster, and better emulate human 

behavior. 

 

Overall, this paper demonstrates the value of implementing social cognition in models of human 

social behavior. By adding a multi-level model of theory of mind to a network interaction model, 

the emergent behavior better reflects real human social behavior and reduces computational 

complexity. The complexity reduction reduces costs in time and in computational hardware, 

making it feasible to model substantially larger populations. For a modeler, this is a clear win. 

Theoretically, it suggests that social cognition provides humans with a fast heuristic approach for 

processing vast quantities of data with less effort. It further suggests that peculiarities of social 

behavior may be the consequence of cognitive limitations that admit inferences about individuals 

and groups given social generalizations. 
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