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Abstract 
 

Among the many centrality indices used to detect structures of actors’ positions in networks is the 

use of the first eigenvector of an adjacency matrix that captures the connections among the actors. 

This research considers the seeming pervasive current practice of using only the first eigenvector. 

It is shows that, as in other statistical applications of eigenvectors, subsequent vectors can also 

contain illuminating information. Several small examples, and Freeman’s EIES network, are used 

to illustrate that while the first eigenvector is certainly informative, the second (and subsequent) 

eigenvector(s) can also be equally tractable and informative. 
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Scholars who study social networks often begin with an analysis to determine which actors are the 

most important, or the most central to a network. For example, in an office environment, to 

understand a network of colleagues, it would be important to identify the most important players 

in that office environment. A challenge in social network analysis comes in trying to figure out the 

best way to understand importance or centrality. It could be that the actors with the largest number 

of ties are the most important (as reflected by degree centrality), for example the colleague who 

has meetings with the largest number of other colleagues, yet presumably quantity does not equal 

quality, and frequent meetings can be a waste of time. On the other hand, it could be that the 

colleagues who seem to be the link between other colleagues are important or powerful, given that 

their connections imply a means of access among others in the network (reflected by betweenness 

centrality). However, neither of these measures would take into account the simple fact that there 

is more power in being connected to powerful people than there is in being connected to a lot of 

people with limited access or resources. Eigenvector centrality is a centrality index that calculates 

the centrality of an actor based not only on their connections, but also based on the centrality of 

that actor’s connections.  

 

Thus, eigenvector centrality can be important, and furthermore, social networks and their study 

are more popular than ever. Eigenvector centralities have become a staple centrality index, along 

with degree, closeness, and betweenness (recall: degrees reflect volumes and strengths of ties, 

closeness captures the extent to which relations traverse few “degrees of separation,” and 

betweenness highlights actors who connect sections of the network; Freeman, 1979). All four 

centrality indices are included in social network texts (cf., Knoke and Yang, 2007; Scott, 2012; 

Wasserman and Faust, 1994), and in research articles that compare the performance of centrality 

indices (cf. Borgatti 2005; Borgatti, Carley, and Krackhardt, 2006; Costenbader and Valente, 2003; 

Friedkin, 1991; Rothenberg et al., 1995; Smith and Moody, 2013; Stephenson and Zelen, 1989), 

as well as in the major social network analysis software packages (cf., UCINet, Pajek, NetMiner, 

NetworkX and LibSNA, NodeXL and SNAP, even Mathematica and StatNet). 

 

When using eigenvector-based centrality, early definitions and current practice are focused on the 

first eigenvector of the sociomatrix that contains the ties among the actors. The reasoning is sound 

in that the first eigenvector is associated with the largest eigenvalue, thus capturing the majority 

of the variance contained in the network. However, there often remains further information about 

the network structure that subsequent eigenvectors can explain. For example, where the first 

eigenvector is likely to reflect volumes and strengths of connections among the actors, a second or 

third eigenvector can delineate those in separate groups within the network who behave in 

somewhat equivalent manners, or other elements of network structure that can be informative in 

understanding the actors and the patterns that link them. The research in this paper is conducted to 

demonstrate that the extraction of only the first eigenvector can be, and in even modest-sized 

networks typically will be, insufficient for a more comprehensive understanding of the network.  

 

This research is not intended to produce a new centrality measure; rather to evaluate the status of 

the eigenvector centrality, and suggest that extending it beyond the extraction of only the first 

eigenvector can be insightful, as illustrated with several examples. To this end, this paper 

demonstrates that network scholars who consider additional eigenvectors (second, third, and 

subsequent) will typically be rewarded in obtaining richer insights about additional aspects of 

network interdependencies. Even that recommendation might not be said to cover “new ground” 



 

2 
 

in that early social network scholars (e.g., Comrey, 1962) seem to have been more willing to 

consider multiple eigenvectors, such as research modeling networks of “consensus analysis” in 

anthropology (e.g., Romney, Weller, and Batchelder, 1986; see also Kumbasar, 1996). However, 

more recent practice has slipped back toward a simpler reduction of deriving only a single 

eigenvector, and to not consider the greater vector portfolio would seem to be a lost opportunity. 

A reviewer also noted that this issue may be all the more relevant in today’s scholarship, given the 

relevance of eigenvector, or eigenvector-like structures, in different models and domains. For 

example, much of “community detection” regularly relies upon singular values (recall these are 

like eigenvectors, but drawn from asymmetric matrices; Wang and Sukthankar, 2015). In addition, 

most latent space models are ultimately based on eigenvector-like structures, including some of 

the recent work on exponential random graphs (cf., Hoff, Raftery, and Handcock, 2002; Hoff and 

Ward, 2004). 

The remainder of this paper is organized as follows:  

1. Eigenvector centrality is reviewed—its conceptual and mathematical definition.  

2. Several simple networks are used to illustrate that a single eigenvector may indeed suffice 

to characterize the network, but that with very little additional complications in structure, 

very often driven by sheer size, a second or third eigenvector (or more) will be helpful and 

informative in describing additional aspects of the actors’ positions in a network.  

3. The eigenvectors are then analyzed for a known, real social network, the electronic 

exchanges in the EIES Freeman data (Freeman and Freeman, 1979). It is shown that the 

first eigenvector is correlated with (i.e., somewhat redundant with) other standard measures 

of centrality, and the second eigenvector illuminates other structural properties in the 

network that are shown to be related to information on the actors’ attributes. 

The paper concludes by suggesting that network scholars may wish to modify how they proceed 

with eigenvector centralities, treating them more analogously to traditional uses of eigenvalues 

and eigenvectors, such as in principal components, namely by extracting multiple vectors. 

 

Eigenvectors—Basics and Centrality 
 

Before turning to eigenvector centralities eigenvectors are first briefly reviewed. The essence of 

the questions underlying eigenvector-based analyses share the quest for data reduction, from some 

number of raw variables to a smaller set of vectors, such as principal components or factors, that 

somehow capture or approximate reasonably well the variability or information in the raw data. 

Sometimes a single vector will suffice, but frequently more eigenvectors are needed, and one 

central question in principal components and factor analysis is: How many components or factors 

to extract? 

 

More precisely, eigenvalues and eigenvectors form the basis of multivariate statistical models, 

such as principal components and factor analysis (e.g., Kim and Mueller, 1978; Manly, 1986; see 

Appendix A). In those models, researchers pose the question as to whether a set of p variables 

might share sufficient covariability to be described by a single, underlying principal component or 

factor. For example, it might be the case that a person’s subjective ratings of his or her “perceived 

health” and “mobility” may be both adequately described by age (or perceived age), with the 

concept (or “factor”) of age serving as the underlying principle construct,, meaning knowledge of 

the person’s age would be sufficient for estimations of the person’s likely standings on perceived 

health and mobility. 
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The mechanics of the model are familiar: a dataset X that is N (sample size) by p (number of 

variables) is processed into a p×p correlation matrix, R. The correlation matrix is factored into two 

unique matrices: one of eigenvalues 𝚲 (ordered 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑝), one of eigenvectors 𝑽 (each 

column with entries 𝑣1, 𝑣2, … 𝑣𝑝 ), and its transpose  𝑽′ , 𝑹 = 𝑽𝚲𝑽′ , such that 𝑦𝑖 = 𝑣1𝑋𝑖1 +

𝑣2𝑋𝑖2 + ⋯ + 𝑣𝑝𝑋𝑖𝑝 (Seber, 1984). 

 

The first eigenvector (column of V) contains the weights that will optimally transform the original 

p variables (e.g., health and mobility) into a single new score (e.g., a scale of perceived age) that 

explains the maximum possible variance in the data matrix X (that variance being 𝜆). The first 

eigenvector yields weights for each variable. If the weight coefficients are high for health and 

mobility, then instead of working with both health and mobility as separate variables in subsequent 

analyses, it should be acceptable to use the perceived age scale instead (i.e. doing so would be 

sufficient in explaining the health and mobility data, and it may be optimal in terms of parsimony 

to use one rather than two variables, per this example). Subsequent eigenvectors 2, 3, …, p will 

contain weights that create new variables that explain the maximum amount of remaining variance 

(such as smoking history, which would not be explained by health, mobility, or age) subject to the 

constraint that each newly created variable is uncorrelated (not redundant) with the previous 

composite variables (Tabachnick and Fidell, 2006). 

 

The application of eigen-models is not typically limited to the extraction of only the first 

eigenvector (Kim and Mueller, 1978; Seber, 1984). In principal components, the frequently 

employed heuristic is to extract as many eigenvectors as there exist eigenvalues that exceed 1.0. 

The reasoning is that given that the eigenvalue is the variance of the composite score formed using 

the weights in the eigenvector, the new composite score should explain at least as much variance 

as that in a single variable, which is 1.0 as expressed in standardized form, such as in a correlation 

matrix (Manly, 1986). In factor analysis, the eigenvalues are examined for their relative size, and 

the number of factors is determined to be that which corresponds to the number of relatively large 

eigenvalues (Tabachnick and Fidell, 2006).1 A sociomatrix is not a correlation or covariance 

matrix, so the rule of thumb to extract as many eigenvectors as there are eigenvalues that exceed 

1.0 (as the new composite variable’s unit variance as in principal components analysis) is not 

directly applicable. Instead, the judgment of the relative size of the ordered eigenvalues (as in 

factor analysis) is the rule of thumb that transfers more readily in the application to social networks. 

And of course, it would be prudent to not extract eigenvectors associated with eigenvalues that are 

zero or negative. 

 

In sum, many research articles in the social and physical sciences find it useful to extract more 

than one eigenvector—the amount and patterns of variability in the source data warrant doing so. 

Some data may certainly be analyzed and captured sufficiently with a single component or factor, 

but it seems that many more papers report multiple components or factors due to the complexities 

of the data and the research questions at hand.  

 

                                                           
1 Note that these analyses are obviously conducted on square, symmetric correlation matrices. When an eigenvector 

model is used on a square, symmetric sociomatrix, it will operate similarly. If the sociomatrix is not symmetric, or if 

it is two-mode, a singular value decomposition yields analogous information (Namboodiri, 1984; Seber, 1984). 
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Figure 1.  Real Social Network that would Yield Different Actor Eigenvector Centralities* 

 

 
 
*This figure is public domain, obtained via an image search on Google of the key word “network,” with the option of 

“usage rights” set to “free to use or share, even commercially.” http://www.smrfoundation.org/2009/09/27/social-

media-network-analysis-workshop-october-29th-in-mountain-view-ca/. 

 

The finding in this paper will suggest that this truism should carry over in the analysis of social 

network data as well. That is, sometimes a network might be explained thoroughly with a single 

eigenvector (as seen through examples after the general review of eigenvector centralities). 

However, what seems largely unexplored in the analysis of social networks is how much more 

clearly and comprehensively the structure of a network may be understood with the use of multiple 

eigenvectors (here too, demonstrated via examples in the section following the review of 

eigenvector centralities). 

 

Eigenvector Centralities 

 
With that general overview of eigenvectors, the social network analyst next considers eigenvector 

centralities for sociomatrices. Stated simply, the idea behind eigenvector centrality is to give actors 

more “centrality credit” for being connected to other actors who are, themselves, well-connected. 

Figure 1 depicts this notion of reflecting both direct and indirect ties. Actors “A” and “B” are of 

comparable size, which represents similar degree centralities, yet even for actors with comparable 

degree centralities (or closeness or betweenness centralities), the eigenvector centrality will assign 

a higher index to actor “B,” whose bold ties (for illustration purposes) show connections to actors 

who are, themselves, highly inter-connected. Actor “A” would have a smaller eigenvector 

centrality index because the bold ties for this actor are connected to others in the network who are 

less inter-connected. 
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To capture such patterns of direct and indirect connections, Bonacich (1972) built on Katz (1953) 

and proposed that the (first) eigenvector (corresponding to the largest eigenvalue) of an adjacency 

matrix could serve as such a centrality measure. Bonacich’s (1972) idea was that the eigenvectors 

(of symmetric sociomatrices, and singular value decompositions of asymmetric sociomatrices) 

would reflect different weighting of ties to partners who, themselves, are highly central versus 

partners who are less central. Analogous to the example of correlations of survey items, first 

eigenvectors frequently reflect actors’ overall volumes of ties, and it will be demonstrated that 

second and subsequent eigenvectors reflect other differentiating patterns of the ties. 

 

More precisely, for a 𝑔 × 𝑔 sociomatrix or adjacency matrix on 𝑔 actors, denoted 𝑿 = {𝑥𝑖𝑗}, for 

actors in rows 𝑖 = 1,2, … 𝑔 extending ties to the same set of actors in columns 𝑗 = 1,2, … 𝑔, the 

eigenvector, v (and eigenvalue, 𝜆 ), are obtained from the familiar equation: 𝑿𝒗 = 𝜆𝒗.  The 

eigenvector score for actor 𝑖 is 𝐶𝐸𝑉(𝑖), a weighted function of the statuses of the other actors to 

whom actor 𝑖 is connected: 𝐶𝐸𝑉(𝑖) = 𝑥1𝑖𝑣1 + 𝑥2𝑖𝑣2 + ⋯ + 𝑥𝑔𝑖𝑣𝑔. Katz (1953), suggests norming 

𝑿 to have values of 1.0 for all columns. However, this standardization would negate one of the 

patterns that is frequently of interest in social networks—the likely different patterns of popularity 

among the actors in terms of the ties they receive. Hence, these analyses proceed with 𝑿 with no 

arbitrary normalization. For simplicity, the adjacency matrix was constructed to be binary and 

symmetric. However, more complex sociomatrices would only strengthen the case that additional 

eigenvectors would be informative. 

 

To track the eigenvector centrality on a small example, consider Figure 2. The first network has 5 

actors in a star configuration. The eigenvalues of the 5×5 sociomatrix are: 2, 0, 0, 0, 2, and, 

hence, at most, one eigenvector would be extracted. Given that eigenvalues capture a sense of 

variability, as soon as they diminish to zero or negative values, those corresponding eigenvectors 

would not be extracted. The eigenvector numbers are attached to the actor labels at the right, and 

they reflect the different role of actor 2.  

 

In the second network in Figure 2, there are 7 actors, wherein actors 2 through 5 are connected as 

previous, but actor 1 now has additional connections. The eigenvalues of this 7×7 matrix are: 

2.175, 1.126, 0.000, 0.000, 0.000, 1.126, 2.175, indicating that the representation of this 

sociomatrix would be helped by two eigenvectors and a focus on only the first eigenvector would 

be insufficient. To the right of the network, the actors are plotted using their scores on the two 

eigenvectors. If the second eigenvector had been ignored, the first eigenvector would indicate that 

actors 1 and 2 are distinct from 3-5 and 6-7, which is accurate and reflective of the volume of ties, 

or their degrees. However, it is more precise to also include the information in eigenvector 2, the 

vertical axis, which offers a new perspective on these actors. The 2-dimensional information makes 

it clear that while actors 1 and 2 are similar in one regard (vector 1), they also play different roles 

(distinguished along vector 2), and that actors 3-5 are highly similar to each other, as are actors 6 

and 7, but different between sets. Together, the two eigenvectors have essentially identified four 

meaningful blocks of roughly stochastically equivalent actors {1}, {2}, {3, 4, 5}, and {6, 7}. The 

use of both eigenvectors captures all the nuances of the network. 

 

In the sections that follow, additional demonstrations are presented that highlight the potential 

information contained in second and subsequent eigenvectors. Early research on the use of 

eigenvectors as centrality scores was focused on making a persuasive case that such a factoring of  
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Figure 2.  Small Examples of Eigenvector Centralities 

 

 Example with 𝑔 = 5 

 
 

 Example with 𝑔 = 7 

 
 

a sociomatrix was useful in a manner analogous to other centralities, such as degree, closeness, 

betweenness centralities, and, like those established indices, also had a specific objective, with 

eigenvectors being sensitive to combinations of direct and indirect linkage patterns. That research 

did not explicitly reject the use of the second or subsequent eigenvectors, but those second and 

later vectors were also frequently not mentioned (cf., Katz, 1958), though Bonacich (1972) hints 

at the eigenvectors that follow, and Wright and Evitts (1961), cited therein, explored multiple 

factors (as did Comrey, 1962), but this extended vector extraction does not seem to have been 

continued in the literature. In the sections that follow, the utility of multiple eigenvectors for small, 

hypothetical networks, are examined as well as that for real network data. 

 

One, Two, and Three or More Eigenvector Examples in 

Small, Hypothetical Networks 

 
If the number of eigenvectors a network analyst should extract depends upon the number of 

relatively large eigenvalues, it is important to acknowledge that sometimes working with a single 

eigenvector will be sufficient and appropriate, if that is what the eigenvalues indicate. For example, 

Figure 3 contains a core-periphery network; that is, there is a subset of actors that are highly  
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Figure 3. One Eigenvector: Centrality Scores for a Core-Periphery Network 

 

 
 

interconnected and a second set of actors connected to the first, but not as completely linked to 

them, nor to each other (cf., Borgatti and Everett, 1999). The network’s eigenvalues are 3.24, 0.62, 

0.62, 0, …; the relatively large fall-off from the first to second eigenvalues, along with the equality 

of the second and third, suggest a single eigenvector is sufficient for capturing the essence of the 

network. This result is due to the network being very small and very clean in structure. The 

eigenvector scores are attached to the actors in the figure, and they rather clearly delineate the 

different roles of the core players versus those along the peripheral edges, in this small example, 

reflecting essentially volumes of ties. 

 

Figure 4 depicts a slightly more complicated network structure. In it, two cliques are connected by 

two ties. (Locating cliques was one of the intended uses of eigenvector weights, as described by 

Bonacich, 1972.) The eigenvalues for this network are: 4.497, 3.678, -0.118, -1, -1, -1, -1, -1, -1, -

2.058, suggesting two eigenvectors may be fruitful in representing the actors’ positions. Scores on 

the first eigenvector seem to reflect volume of ties (it is often the case in networks that the 

eigenvector is at least modestly correlated with degrees), given that actor 10 has six ties, actors 1 

and 2 have five, and the other actors have four, and the scores cleanly distinguish the roles of the 

boundary spanning actors 1, 8, and 10 from the others. In addition, the second eigenvector conveys 

complementary information and, together, the two eigenvectors locate four sets of actors with 

similar structures, whereas the use of solely the first eigenvector would have distinguished only 

two sets of actors. Even for this simple network, had a network analyst relied solely upon the first 

eigenvector, valuable information would have been lost.  

 

Per helpful suggestions of reviewers, the two sets of eigenvector scores for these 10 actors were 

correlated with other information. The network is a hypothetical example, but the analysis yielded 

the following: Firstly, the first eigenvector is significantly correlated with degree (r = 0.955), 

closeness (r = 0.936), and betweenness (r = 0.936). In contrast, the second eigenvector is not 

correlated with any of the traditional centrality measures: degree (𝑟 = −0.058), closeness (𝑟 =
−0.047), or betweenness (r = 0.011). Next, a dummy variable was created to represent the clique 

in which an actor resides. Specifically, group one was comprised of actors 1-5, and group two was 

defined as consisting of actors 6-10. The first eigenvector was not significantly correlated with  
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Figure 4.  Two Eigenvectors: Centrality Scores for Two Connected Cliques 

 

 

 
 

group membership (𝑟 = −0.295), where group membership seems to be the structural property 

that the second eigenvector detects (r = 0.993). It is always be helpful in the interpretation of a 

network analysis to find correlates of all eigenvectors extracted, and it should be the case that, just 

as happened in this small example, doing so can help make clear what structural patterns a second 

or third eigenvector may be reflecting. 

 

Figure 5 shows a network that contains two local substructures—a hierarchy and a core-periphery, 

with one connection linking them. The eigenvalues are 2.47, 2.09, 1.41, 0.86, 0.62, 0, 0, 0, -0.64, 

-1.41, -1.58, -1.62, -2.20, which suggest that three or possibly even four eigenvectors may be 

useful. The magnitudes of these eigenvalues show less dramatic delineations between those that 

are probably associated with substantial eigenvectors versus those that are associated with 

eigenvectors that essentially convey noise. To proceed, the analysis might begin by examining the 

four vectors, and if the fourth is meaningful, retain it, and if it does not seem to be interpretable or 

helpful, retain only the first three. Thus, the information conveyed by the first four eigenvectors is 

examined. (Recall the intention with this example is to demonstrate an example with more than 

one or two eigenvectors.)  

 

The first eigenvector in Figure 5 conveys volume information. Specifically, actors 8-10 have the 

highest eigenvector centralities and three links each, which contrasts to actors 4-7 who have the 

lowest eigenvector centralities and only one link each. The correlation with degree centralities,  
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Figure 5.  Four Eigenvectors: Centrality Scores for Network Connecting a Hierarchy and Core-

Periphery 
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𝑟 = 0.678, is not perfect, given that actors 1-3 also have three links. However, their eigenvector 

scores are a bit lower, but the design of an eigenvector was never intended to be wholly redundant 

simply with degrees. (A first eigenvector is typically correlated with degree centrality, yet not 

typically perfectly correlated, both findings are a result of the fact that the first eigenvector is 

designed as an iteratively weighted function of actor degrees. Thus, it will be typically related to, 

yet not completely redundant with, degree centralities.) The second eigenvector empirically 

delineates other pattern information, such as portions of the hierarchy (i.e., actors 1-3 at the top of 

the hierarchy versus those at the bottom, actors 4-7), the core (actors 8-10) versus the peripheral 

(actors 11 and 12), and actor 13, the boundary spanner that links the sub-networks.  

 

In the second plot in Figure 5, the third eigenvector further delineates the mapping of the left 

portion of the hierarchy (actors 2, 4, 5) from the right (actors 3, 6, 7), with the core-peripheral 

actors sitting at the center of this vector because they do not contribute to this distinction. The 

fourth eigenvector contrasts actors 1, 8, and 13 (with negative indices) from the rest (whose indices 

are positive), a difference that is interesting given that actors 1, 8, and 13 are precisely those that 

play a substantial role in connecting the two local structures. Thus, a network analyst might wish 

to include the fourth eigenvector as well. 

 

Analogous to the investigation for the network in Figure 4, correlates were sought for the four 

eigenvectors depicted for the network in Figure 5. The first eigenvector was correlated with degree 

(r = 0.678), closeness (r = 0.447), and betweenness (r = 0.460). The second eigenvector was not 

significantly correlated with any of these centrality scores (average r = 0.239). The third 

eigenvector was not correlated with the traditional centrality scores (all r’s = 0.000). The fourth 

eigenvector was not correlated with degree (𝑟 = −0.333), but it was significantly correlated with 

closeness (𝑟 = −0.835 ) and betweenness (𝑟 = −0.824 ). Those latter two correlations were 

sufficiently high as to give pause as to whether extracting four eigenvectors was overly much, as 

the fourth eigenvector may be perhaps redundant with the first. However, the fourth eigenvector 

was not entirely redundant with the first, as will be addressed and demonstrated shortly. 

 

Next, dummy variables were created to capture other structural properties, specifically which 

group an actor was in (group 1 was actors 1-7, group 2 was actors 8-13), whether an actor was a 

spanner (yes for actors 1, 8, and 13), whether the actors existed in a clique (yes for actors 8, 9, 10), 

whether actors had positions that were moderately between (yes for actors 1, 2, 3), and whether 

actors were in a subgroup in the hierarchy to the left (subgroup one was actors 3, 6, 7; subgroup 

two was actors 2, 4, 5). The findings follow: 

 The first eigenvector was significantly correlated with the group delineating whether they 

were a part of the hierarchy or the core-periphery (r = 0.771), and the clique of actors 8-10 

(r = 0.893).  

 The second eigenvector was correlated with these as well (group 𝑟 = −0.854, and clique 

𝑟 = −0.711), and, in addition, reflected the actors who have moderate between positions 

(actors 1, 2, 3, r = 0.745). 

 The third eigenvector reflected subgroup membership (r = 0.795 for the second group of 

actors 2, 4, 5). 

 Regarding the issue of whether the fourth eigenvector was redundant with the first, it was 

not, as it captured the roles of the spanners (actors 1, 8, 13), which is frequently an 

important network diagnostic. 
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These investigations were intended as a reminder that multiple eigenvectors can provide greater 

information than information contained in only a single eigenvector. Even these small networks 

demonstrated that while occasionally a single eigenvector may be sufficient, in general, it may be 

beneficial to extract multiple eigenvectors to enrich the profile of the actors’ positions within the 

networks.  

 

These examples have also been useful in illustrating the frequent observation that the first 

eigenvector typically reflects volume as correlated with degree centrality. Second eigenvectors, 

and those that follow, are designed mathematically to be orthogonal to, or uncorrelated with, the 

first eigenvector, and, hence, are less likely to be correlated with standard network centrality 

indices, such as degree. The information provided by the second eigenvector in Figure 4, and the 

second, third, and fourth eigenvector in Figure 5 distinguished roles of actors in networks in a 

manner more detailed than a reflection of volume, as important as volume is. In the section that 

follows, it will be shown that in real (typically noisy) network data, a single eigenvector will seem 

to be insufficient for fully capturing the information in the network. 

 

Eigenvectors on a Real Social Network 

 
In this section, the question is posed as to whether the multiple eigenvectors issue matters on a real 

social network. The analysis examines the 32 actors in Freeman’s EIES (electronic information 

exchange system) network (Freeman and Freeman, 1979, as measured at time 1), and it shall show 

be shown that a single eigenvector would not provide a complete analysis of the patterns of the 

social connections. 

 

Freeman EIES Network 

 
The 32×32 EIES network (Freeman and Freeman, 1979) was symmetrized by averaging the 

sociomatrix values; 𝑿𝑠𝑦𝑚 =
1

2
(𝑿 + 𝑿′) . This matrix yielded ordered eigenvalues that begin: 

46.89, 13.99, 8.54, 5.52, 3.93, 2.32, 1.87, 1.14, 0.27, 0.08, -0.16, and suggest that two eigenvectors 

would be sufficient in capturing most of the network patterns. It may be the case that a network 

scholar might believe that three (or more) eigenvectors would be necessary to capture the essence 

of the patterns in the matrix. If there is uncertainty, the third vector can be examined to see if its 

inclusion is necessary for the data description (or whether two eigenvectors may be sufficient), 

considering the slight loss in parsimony if one were to proceed with three rather than two 

eigenvectors. Each eigenvector could be correlated with any additional measures on the actors—

their positions or their attributes, to search for significant correlates and explanations of subsequent 

vectors, which would strengthen the case for keeping them. Regardless, recall once again that the 

main point is that in many applications, one vector might not be sufficient, so two or three, or 

more, may be beneficial.  

 

Figure 6 contains the plot of the 32 actors along the two eigenvectors. Without knowing any 

content to describe the network, the fact that there is scatter in this plot indicates that there is more  
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Figure 6. Freeman Time 1, Two Eigenvectors 

 

 
 

variability among these actors than was captured solely along the first eigenvector. The Freeman 

EIES network is familiar to social network scholars, but its characterization by eigenvector 

centrality has been insufficient. By definition, a second eigenvector brings new information to the 

network analysis beyond the first.  

 

Freeman’s EIES network was selected as an illustration in part because data on actor attributes are 

available, and these might help interpret the eigenvector centralities. The actor attributes include a 

researcher’s citation count and a dummy variable for the researcher’s discipline (sociology, 

anthropology, statistics, or psychology). Thus the correlations among these eigenvectors, the actor 

attributes, and the other traditional centralities of degree, closeness, and betweenness were 

examined.  

 

The correlations in Table 1 show the typical finding that the first eigenvector is rather highly 

correlated with three standard measures of actor centrality: 𝑟 = 0.95 for degree, 𝑟 = −0.59 for 

closeness, and 𝑟 = 0.62 for betweenness. (Also not unusual in real networks, these three indices 

were somewhat correlated amongst themselves: 𝑟𝑑𝑒𝑔𝑟𝑒𝑒,𝑐𝑙𝑜𝑠𝑒 = −0.49, 𝑟𝑑𝑒𝑔𝑟𝑒𝑒,𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 0.69,  
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Table 1. Freeman Time 1 Network Correlates 

 

 Eigenvector Centralities 

 1 2 

Degree  0.95***    . 

Closeness -0.59*    . 

Betweenness  0.62***    . 

   

Actor Attributes:   

Citations    . -0.48** 

Sociology    . -0.60* 

Anthropology    .  0.64*** 

Statistics    .    . 

Psychology    .    . 

*p<.01, ***p<.0001, “.” = n.s. 

 

and 𝑟𝑐𝑙𝑜𝑠𝑒,𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = −0.29.) In contrast, the second eigenvector was not at all redundant (not 

significantly correlated) with the three other measures of actor centrality.  

 

Next, note that the first eigenvector does not correlate with any of the actor attributes, nor did 

degree centrality, closeness, or betweenness centrality correlate with the actor attributes. However, 

the second eigenvector picks up an inverse relationship to citations and belonging to sociology, 

and a positive association with anthropology.  

 

Figure 7 depicts the relationship between the eigenvectors and the actor attributes. Using 

regression to determine the location of the attributes (cf., Davidson 1983), the group of actors in 

the “south” of the plot tend to be the sociologists, who are also more heavily cited, whereas the 

anthropologists collect at the “north” of the plot. The correlations with the other disciplines, 

statistics and psychology, were not significant. If they were to be represented, their locations would 

be placed at the origin of the plot. Next, the “east” of the plot is marked by the degree and 

betweenness centralities, consistent with their correlations with the first eigenvector (i.e., the east-

west axis). Closeness is also correlated with the first eigenvector, but the correlation is negative, 

hence it is more towards the “west” of the plot.  

 

Finally, as a check on the analyses, a singular value decomposition was also derived on the original 

Freeman Time 1 network which was asymmetric; per 𝑿 = 𝑳𝑨𝑪, where 𝑳 contains the eigenvectors 

of 𝑿𝑿′ , the matrix describing the similarities among the actors’ outgoing tendencies having 

aggregated over their partner behaviors, 𝑪 contains the eigenvectors of 𝑿′𝑿, the matrix describing 

the partners’ receiving tendencies, having aggregated over the actor initiatives, and 𝑨 contains the 

singular values which are the square roots of the eigenvalues of the 𝑿𝑿′ and 𝑿′𝑿 matrices. The 

first eigenvector of 𝑿𝑠𝑦𝑚 (plotted previously) was highly correlated with the first vector of 𝑿 in 𝑳, 

𝑟 = 0.92, and the second eigenvector of 𝑿𝑠𝑦𝑚 was highly correlated with the second vector in 𝑳, 

𝑟 = 0.97. Similarly, the first eigenvector of 𝑿𝑠𝑦𝑚 was highly correlated with the first vector in 𝑪, 

𝑟 = 0.95, and the second eigenvector of 𝑿𝑠𝑦𝑚 was highly correlated with the second vector in 𝑪, 

𝑟 = 0.97. Thus, little information seems to have been lost by treating the network as essentially 

symmetric with mutual ties. 



 

14 
 

Figure 7.  Freeman Time 1, Two Eigenvectors, with Actor Attributes 

 

 
 

Discussion 
 

When using eigenvector-based methods, such as principal components or factor analysis, social 

and physical scientists often extract more than one vector or factor. To characterize one’s data 

otherwise, is to leave much of it unexplained. In this paper, illustrations have been offered to help 

support the recommendation that an extension beyond a single eigenvector should also apply to 

the analysis of social networks. 

 

In the social networks literature, the traditional emphasis is to focus on extracting a single 

eigenvector to represent a centrality index. The current research considered whether the centrality 

information derived from a first eigenvector is sufficient for capturing structure contained in social 

networks. It was shown, in hypothetical and real data, that subsequent eigenvectors could provide 

supplemental information.  
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When social scientists extract principal components or factors, no one would think to necessarily 

limit themselves to a single factor (i.e., one is rarely sufficient). However, in typical application, 

social networks scholars focus solely on the first eigenvector. It was shown that additional 

eigenvectors may be informative in the world of social networks, and, therefore, they should also 

be extracted and used for a richer understanding of the structure in the network. The first 

eigenvector will typically be correlated with traditional measures of centrality, particularly degree. 

Extracting a second, third, or more eigenvectors will necessitate further investigation as to the 

nature of the structural patterns that the new eigenvectors reflect. Even in the simple networks 

depicted in Figures 4 and 5, but also in the real EIES network depicted in Figures 6 and 7, several 

classes of network structures and actor attributes were shown to have mapped onto the eigenvector 

scores. This second step of analyses, used to help interpret the eigenvector scores, required 

calculating correlation coefficients. 

 

The first eigenvector, in any statistical application including the analysis of social ties, meets the 

objective function of explaining the maximum amount of variance in the dataset. The second 

eigenvector is derived to explain the maximum amount of remaining variance, subject to the 

constraint that the resulting vector be orthogonal to, or uncorrelated with, the first eigenvector. 

Thus, in social network analysis, while the first eigenvector centrality index is likely to be 

correlated with the degree, closeness, and betweenness centralities, a multi-dimensional 

eigenvector centrality, including the second eigenvector, and, if necessary, those that follow, will 

be uncorrelated with the previous eigenvector(s) and therefore uncorrelated with the traditional 

degree, closeness, and betweennness centralities as well. This lack of redundancy indicates the 

supplemental information that the second and subsequent eigenvectors will bring to the network 

modeler. 

 

As when scholars use eigenvalues and eigenvectors in other arenas (e.g., principal components or 

factor analysis), network scholars will have to balance the tradeoff of a more thorough 

understanding of the data (in extracting more eigenvectors) and parsimony (in extracting fewer). 

In some datasets, it may be the case that only a single eigenvector would be necessary to capture 

the essence of the network (i.e., if the size of the first eigenvalue greatly dominates the others). 

However, if two or more eigenvalues are large, relative to the others, it may prove beneficial to 

examine whether the additional eigenvectors provide enlightening complementary information. If 

the eigenvalues are only subtly different, it may be that the network scholar concludes that 

extracting an additional eigenvector is not “worth it” considering the trade-off between the 

additional value of more information explained versus the added complexity and reduced 

parsimony. 

 

Note that this research would also have implications for other centrality indices that are based on 

eigenvectors, such as Bonacich’s power index (1987; 2007; Bonacich and Lloyd, 2001), and 

Google’s Page Rank index (Brin and Page, 1998; Friedkin and Johnsen, 1990; Friedkin and 

Johnsen, 2014). The eigenvector-based models have been expanded (e.g., for asymmetries, 

Bonacich and Lloyd, 2001; and for non-binary and negative values, Bonacich, 2007), and further 

developed, finessing parameters of the eigenvector values to weight indirect ties to a greater or 

lesser extent (Bonacich, 1987), and each of these could be generalized as well. 
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As a practical matter, given the focus of social network analysis on solely the first eigenvector, 

network scholars seeking to examine second, third, and subsequent eigenvectors will have to 

circumvent network analysis packages. Network scholars seeking to extract multiple eigenvectors 

can use software coding such as that provided in Appendix B.  

 

This research described and illustrated the usefulness of a second, third, and possibly additional 

eigenvectors, beyond the typical extraction and use of only the first eigenvector to capture 

centrality and social network structural properties. If more than one eigenvalue is relatively large, 

then the set of multiple eigenvectors contain more information than just the first, which tends to 

reflect overall volume like degree centralities. In such cases, if the additional eigenvectors are not 

used, information would be lost in the representation and understanding of the network patterns.  

 

Social network data can be more challenging and effortful to gather than survey data which can 

seem rather more straightforward. Accordingly, as much information should be extracted from the 

network data as possible, and additional eigenvectors can enable this goal. 
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Appendix A 
 

This appendix provides a refresher that demonstrates the traditional use of eigenvectors on 

correlation matrices. Contrast two examples. First, Figure A1 presents a correlation matrix of six 

variables that are all somewhat correlated. This pattern is not unusual when the variables all 

represent slightly different wordings of a single, underlying concept being measured on a survey. 

For example, say x1 is a survey item that asks, “How satisfied are you with today’s flight?” and 

x2 asks, “How likely is it you would recommend our airline to your friends?” through to x6 which 

asks, “How likely is it you will return to our airline the next time you need to fly?” These six 

questions have much in common and are likely correlated; as one element of customer satisfaction 

rises, others will likely follow suit. The eigenvalues of the matrix in Figure A1 (3.675, 0.578, 

0.500, 0.500, 0.500, 0.247) show a sharp decline in magnitude after the first, suggesting that a 

single eigenvector will capture the majority of the variance in the data. The entries in the 

eigenvector indicate that the optimal means of combining these variables is essentially an average 

(i.e., weighting x1 by 0.449 through x6 by 0.385). 

 

By comparison, Figure A2 shows a correlation matrix among six variables in which two latent 

concepts seem to have given rise to the data, one concept driving x1x3, another for x4x6. 

For example, perhaps x1x3 are “satisfaction” questions as suggested previously, whereas in this 

survey, perhaps the question x4 asks, “Do you believe the cost of your air travel was fair?” through 

to x6 that might ask, “Do you think the price of your airline ticket was good value?” For these new 

six questions, x1x3 will be highly correlated, each tapping the construct of satisfaction, and 

x4x6 will be highly correlated, each reflecting a price assessment. Naturally, the two sets are 

modestly correlated. The eigenvalues for this correlation matrix (3.052, 1.562, 0.408, 0.401, 0.292, 

0.286) show a dramatic decline after the second, indicating the extraction of two eigenvectors 

would be more fruitful than that of a single vector. The first eigenvector again suggests that much 

of the structure of the matrix would be captured simply by an average of the six variables. The 

second eigenvector delineates the two groups, with variables x1x3 having negative coefficients, 

and x4x6, positive. (In principal components and factor analyses, of course, these initial 

matrices are usually rotated to further clarify the structures, however the goal of simple structure, 

objectively maximized by a a preponderance of zeros in the rotate matrix to represent constructs, 

usually of variables, here of actors, seems less applicable, but certainly, in some uses, social 

networks scholars may find a reason to do so; Kim and Mueller, 1978). If this analysis had 

proceeded with only the first eigenvector, obviously the information contained in the second vector 

would have been lost.  

 

Table A1: Correlation Matrix with One Underlying Construct 

    x1 x2 x3 x4 x5 x6  eigenvector 

x1 1.00       0.449 

x2 0.70 1.00      0.414 

x3 0.65 0.50 1.00     0.406 

x4 0.60 0.50 0.50 1.00    0.399 

x5 0.55 0.50 0.50 0.50 1.00   0.392 

x6 0.50 0.50 0.50 0.50 0.50 1.00  0.385 
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Table A2: Correlation Matrix with Two Underlying Constructs 

    x1 x2 x3 x4 x5 x6  vector 1 vector 2 

x1 1.00       0.416 -0.421 

x2 0.70 1.00      0.409 -0.406 

x3 0.65 0.60 1.00     0.401 -0.387 

x4 0.20 0.20 0.20 1.00    0.392  0.473 

x5 0.25 0.25 0.25 0.70 1.00   0.407  0.412 

x6 0.30 0.30 0.30 0.65 0.60 1.00  0.423  0.339 

 

In this paper, it was argued that this issue exists in analogous form for eigenvector centralities of 

social network data. That is, sometimes one eigenvector can be sufficient, but often, additional 

eigenvectors can provide useful complementary information. 
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Appendix B: SAS Code to Obtain Multiple Eigenvectors 

 
proc iml; 

x={ 0 1 0 0 0, 

       1 0 1 1 1, 

       0 1 0 0 0, 

       0 1 0 0 0, 

       0 1 0 0 0 }; *This matrix is the first in Figure 2.; 

val=eigval(x); vect=eigvect(x); print val vect;  

quit; run; 

 

This code will derive the eigenvectors of the sociomatrix X. Alternatively, symmetric 

sociomatrices could be submitted to principal components analyses in packages such as SPSS or 

SAS. A principal component is merely an eigenvector with each element multiplied by the square 

root of its eigenvalue. That is, a first component begins with the first eigenvector and multiplies 

each element by the square root of the first eigenvalue (and a second component is the second 

eigenvector multiplied by the square root of the second eigenvalue, etc.). This multiplication 

essentially stretches the results to resemble ovals, with greater variance on the first axis than on 

the second (to reflect that 𝜆1 > 𝜆2). Strictly speaking, the resulting components from SPSS or SAS 

should be scaled back to return to their original eigenvectors. To obtain the original eigenvectors, 

the elements in the components loadings matrix would be divided by the square roots of their 

respective eigenvalues. However, given that one is a function of the other, they are perfectly 

correlated, so reporting two or three components rather than two or three eigenvectors would not 

be misleading, because the ordering of the actors along either the vector or the component would 

be the same. 

 

 

 

 


