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Abstract 

An affiliation network consists of actors and events. Actors are affiliated with each other by virtue of 

the events they mutually attend. This article introduces a family of affiliation measures that captures 

the extent of actors‘ affiliations in the network. At one extreme, one might have an actor who attended 

many events, but none of these events were attended by any of the other actors in the network. 

Although of high degree, in no reasonable interpretation would such an actor be considered highly 

affiliated with other actors in the network. At the other extreme, one might have an actor defined by a 

collection of events, all of which were attended by another actor(s), making the actor as enmeshed in 

the network as possible. Most actors will be between these extremes, with some events being shared 

by varying others, and some not. This article introduces a family of affiliation measures based on the 

entries of the co-occurrence matrix. After defining the measures, the cumulative distribution function 

of first-order affiliation is derived and expressed as a difference of binomials. 

Keywords 

Affiliation networks, network methodology, statistical methods, two-mode networks 

 

 

 

 

_________________________ 

*A previous version of this paper was presented at Sunbelt XXXI, the annual conference of the 

International Network for Social Network Analysis, St. Pete Beach, FL, February 8-13, 2011. 

mailto:comfrank@buffalo.edu


 

 
 
Page 2 of 19 

 

Introduction 

Two-mode networks, in which the nodes of a network are partitioned into two groups, or modes, have 

received increasing attention in the social network literature (e.g., Latapy, Magnien and Del Vecchio 

2008; Wang, Sharpe, Robins and Pattison 2009). The type of two-mode networks considered in this 

article are often called affiliation networks, and we think of one of the modes as a set of actors and 

the other mode as a set of events. Actors are affiliated with each other by virtue of the events they 

mutually attend. A classic example comes from Davis, Gardner and Gardner (1941) in which the 

actors are 18 southern women and the events are 14 social gatherings attended by varying numbers of 

the women. Even though one uses the terms actors and events, the objects of study need not be literal 

actors and events. For example, in the affiliation network of Ferrer i Cancho and Solé (2001), the 

―actors‖ are words and the ―events‖ are the sentences in which they appear.  

Affiliation networks have been used to study subjects as diverse as interlocking corporate directorates 

(Koenig, Gogel and Sonquist 1979), community organizations (Crowe 2007), director affiliation 

through both corporate and noncorporate organizations (Barnes and Burkett 2010), academic 

collaboration (Moody 2004), political communication (Chung and Park 2010; Park and Thelwall 

2008), human language (Ferrer i Cancho and Solé 2001; Zhou and Heineken 2009), computer-

mediated communication (Cho and Lee 2008), and the disciplinary structure of academic 

organizations (Barnett and Danowski 1992; Chung, Lee, Barnett and Kim 2009; Doerfel and Barnett 

1999; Lee 2008). 

Every affiliation network has a representation as a bipartite graph, where an edge is placed between 

an actor and an event only if the actor attended that event. Because certain edges are prohibited 

(namely edges between actors and edges between events), affiliation networks present certain 

problems (and opportunities) when one attempts to apply standard network measures (Borgatti and 

Everett 1997). This article develops a family of affiliation indices specifically for two-mode networks 

that are represented by bipartite graphs. I also derive the cumulative distribution function of one of 

the indices from the family and illustrate the measures on both hypothetical and empirical networks. 

The structure of the paper is as follows: First, I introduce basic mathematical terminology. Then I 

define a family of affiliation indices and derive the sampling distribution of one of these indices. I 

then illustrate the ideas on an empirical network, and offer some concluding thoughts. 

 

Mathematical Preliminaries 

The networks in this article are loopless and undirected. Every such network has a mathematical 

representation as a graph G = (V, L), where V is a finite, nonempty set of vertices or nodes and L is an 

irreflexive, symmetric relation on V. The elements of L are called edges or links. If (v, w)  L, then the 

nodes v and w are neighbors and the edge (v, w) is incident with the nodes. The degree of a node v, 

symbolized d(v), is the number of neighbors it has (with the parenthetical material dropped when the 

node is understood). In a two-mode network, the nodes can be partitioned into two groups 

meaningful to the investigator; for example, men and women or authors and their papers. Most often, 

it is assumed that every edge is incident with exactly one node from each group. In such a case, the 

representation is a bipartite graph. The graph G = (V, L) is bipartite if V can be partitioned into two 

nonempty, disjoint subsets A = {v1, v2, … , vn} and E = {e1, e2, … , em} such that every edge is incident 

with exactly one node from A and exactly one node from E. Two-mode networks with a bipartite 

representation are called affiliation networks, and we think of A as a set of actors and E as a set of 
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events. All edges are incident with exactly one actor and exactly one event. If an edge is incident with 

vi  A and ej  E we will say that actor vi attends event ej, and if two actors attend the same event we 

will say that they share the event. 

Each bipartite graph gives rise to an n × m affiliation matrix, A = [aij], where aij = 1 if and only if the 

ith actor attends the jth event. The degree of vi is given by the ith row sum of A. If one post-multiplies 

the affiliation matrix by its transpose, one obtains the co-occurrence matrix C = AA´. If i ≠ j then the 

ijth entry of C is the number of events shared by actors vi and vj; it is the degree of vi if i = j. 

 

How Should We Measure Affiliation? 

The affiliation index of an actor should measure the extent to which the actor is fully integrated into 

the structure of the affiliation network—how enmeshed the actor is, by virtue of the actor‘s shared 

events, relative to other actors. The one-mode notion of centrality immediately comes to mind as a 

possible proxy, but upon reflection it doesn‘t take into account the richer types of connections 

possible in a two-mode network. (For applications of various centrality measures to two-mode 

networks see Borgatti and Everett 1997, and Faust 1997.) To see what I mean, consider Figures 1 and 

2, which show two depictions of a 10-actor, 25-event affiliation network, and consider degree 

centrality, which is given by the degree of the actor. Inspection of Figure 1 shows that the most central 

actors are E, with a degree of 9, and actors G and H, each with a degree of 8. The extent of their 

integration into the network is quite different, however, though it is not obvious in the figure.  

We can gain a little better insight by using a different visual depiction of the network. Figure 2 shows 

a hypergraph that corresponds to the bipartite graph of Figure 1. The mathematical exposition in the 

remainder of this article does not use hypergraphs, so there is no need to define them formally. It 

suffices at this point to say that in Figure 2 the actors are represented by the various geometric shapes 

and the events are represented by the numbers contained in the shapes. (The actual geometric 

shapes—triangles, rectangles, ovals, etc.—have no significance apart from the events they enclose. The 

different shapes are used only to help the eye distinguish among the various actors; had only a single 

style been used—rectangles, say—it would have been difficult visually to tell which actors attended 

which events.) Note that there is a one-to-one correspondence between the bipartite network of 

Figure 1 and the hypergraph of Figure 2. For example, in Figure 1 actor A is linked to events 1, 6, and 

7. In the hypergraph, the triangle representing actor A encloses precisely these three events. Similarly, 

Figure 1 shows that actor J attended events 15 and 25, and in the hypergraph the upward sloping oval 

representing actor J encloses these two events. The degree of an actor and all other structural features 

are thus maintained in the two representations.  



 

 
 
Page 4 of 19 

 

1

9

8

7

6

10

2

3

4

5

15

14

13

12

11

20

19

18

17

16

25

24

23

22

21

E

D

C

B

H

G

F

J

I

A

 

Figure 1. Bipartite graph representing a hypothetical affiliation network. 
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Figure 2. Hypergraph representing a hypothetical affiliation network. 

 

Mathematically, we will work with the bipartite network and its affiliation matrix, but, visually, it is 

easier to see the shared affiliations in the hypergraph. The hypergraph also shows that the degree of an 

actor does not necessarily correspond to how affiliated the actor is with other actors. For example, as 

can be seen in Figure 2, actor H, though of high degree, is actually quite marginal in terms of shared 

events, attending only one event in common with other actors, namely event 10, which is shared by 

actors E and G. Actor G‘s affiliations, on the other hand, are quite a bit more extensive. All of the events 

attended by this actor were also attended by others, primarily actor E, but also actors F, H, I, and J. 

Actor E, with the highest degree, has nearly as many mutually attended events as G, but there are two 

events (4 and 5) not attended by other actors. In fact, in some networks centrality and affiliation might 

even be inversely related. From a purely probabilistic viewpoint, an actor of high degree, say, would be 

unlikely to share a large proportion of events with another actor, whereas an actor of low degree would 

be much more likely to have a large proportion of mutually attended events. 

There are several ways in which one might assess an actor‘s affiliation using shared events. Their 

number, size, and multiplicity could be taken into account. As a first attempt, however, let us simply use 

the largest number of events that an actor shares with another (single) actor. We can then divide this 

number by the degree of the actor, giving us a proportion. 

To formalize these notions, let C = [cij] be the co-occurrence matrix and define the mutual affiliation of 

the distinct actors vi and vj to be the total number of events they share, which, of course, is given by cij. 

The maximum mutual affiliation of an actor vi is defined to be μ(vi) = max{cij}, where the maximum is 
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to be taken across all j not equal to i. In the co-occurrence matrix, μ(vi) is the largest off-diagonal entry 

in the ith row. Using these notions, we define actor vi‘s affiliation index, symbolized α(vi), by the 

equation: 

)(

)(μ
)(

i

i
i

vd

v
v  .         (1) 

As before, the parenthetical material can be dropped when the actor is understood. Table 1 shows the 

degrees, maximum mutual affiliations, and the affiliation indices for each of the actors in Figures 1 and 2.  

 
Table 1. Degrees, Maximum Mutual Affiliations, and Affiliation Indices 

 ______________________________________________________________ 
 

  Actor  d μ α 

 ______________________________________________________________ 
 

  A 3 2 .667 

  B 2 1 .500 

  C 3 1 .333 

  D 4 2 .500 

  E 9 6 .667 

  F 4 2 .500 

  G 8 6 .750 

  H 8 1 .125 

  I 2 1 .500 

  J 2 1 .500  

______________________________________________________________ 
 

Note: Actors are those in Figures 1 and 2. The symbols d, μ, and α refer to, respectively, the actors’ degrees, 

maximum mutual affiliation scores, and affiliation indices. 

 

As a measure of affiliation, α is not perfect. For example, in Figure 2, the maximum mutual affiliation 

for actor E consists of the 6 events shared with actor G. Not taken into account are the lone event shared 

with actor C and the fact that three events—10, 12, and 15—are shared with others in addition to actor G. 

In fact, one disadvantage of the measure is that it is somewhat ―coarse.‖ To see what I mean, consider 

once again Figure 2 and focus on actors D and F. Both are of degree 4 and both have a maximum mutual 

affiliation of 2, giving an affiliation index of .500. One could certainly argue, however, that actor D is 

more embedded in the network than F. These actors share two events with each other, and each shares 

an additional two events with another actor (A for actor D and G for actor F), but actor D also shares an 

event with a third actor (actor B) whereas F does not. Because the present measure depends primarily 

on only an actor‘s maximum mutual affiliation without taking into account other mutual affiliations, 

actors D and F receive the same scores with the present measure whereas a finer-grained measure 

might distinguish between them. 
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The above analysis suggests that we might consider the present measure merely the first in a family of 

measures, what we might call the first-order affiliation index and symbolize α1. If we let μi be the ith 

largest mutual affiliation an actor has, then we would rewrite Equation 1 as α1 = μ1/d (if the actor is 

understood). Moreover, a reasonable second-order affiliation index would be α2 = (1/2)[(μ1 + μ2)/d]. In 

general, for k = 1, . . . , n – 1 we define the kth-order affiliation index for an actor to be the sum of the 

actor‘s k largest mutual affiliations all divided by kd (dividing by k normalizes the measure to a 0-1 

scale). For actors D and F of Figure 2, the first- and second-order affiliation indices do not distinguish 

between them, but the third-order affiliation index does, giving actor D a score of .417 and actor F a 

score of .333, according with our insight that actor D is more embedded in the network than actor F.  

Table 2 shows affiliation indices of all orders for the actors in Figures 1 and 2. In addition to 

distinguishing between actors D and F, three actors—B, I, and J—are seen to have identical patterns of 

affiliation. Each of these actors attends two events, one shared by two others and one shared by just one 

other, and so they have identical affiliation indices for all orders.  

 
Table 2. Affiliation indices of all orders for hypothetical network 

______________________________________________________________ 
 

Order 

______________________________________________________________ 
 

 Actor 1 2 3 4 5 6 7 8 9 

______________________________________________________________ 

 A 0.667  0.500  0.444  0.333  0.267  0.222  0.190  0.167 0.148 

 B  0.500 0.500 0.500 0.375 0.300 0.250 0.214 0.188 0.167 

 C 0.333 0.333 0.333 0.250 0.200 0.167 0.143 0.125 0.111 

 D 0.500 0.500 0.417 0.313 0.250 0.208 0.179 0.156 0.139 

 E 0.667 0.389 0.296 0.250 0.222 0.185 0.159 0.139 0.123 

 F 0.500 0.500 0.333 0.250 0.200 0.167 0.143 0.125 0.111 

 G 0.750 0.500 0.375 0.313 0.275 0.229 0.196 0.172 0.153 

 H 0.125 0.125 0.083 0.063 0.050 0.042 0.036 0.031 0.028 

 I 0.500 0.500 0.500 0.375 0.300 0.250 0.214 0.188 0.167 

 J 0.500 0.500 0.500 0.375 0.300 0.250 0.214 0.188 0.167 

______________________________________________________________ 
 

Note: Actors are those in Figures 1 and 2. 

 

In practice, it is probably not necessary to compute affiliation indices of all orders. In fact, first-order 

affiliation may be sufficient in many applications. Moreover, the first-order affiliation index has three 

advantages: First, it is intuitive; it is equal to the largest proportion of events that an actor attends with 

another actor. Second, it is easy to compute; the maximum mutual affiliations can be taken from the co-

occurrence matrix and the degrees can be taken from either the co-occurrence matrix or the affiliation 

matrix. Finally, the measure leads to a mathematically tractable derivation of its sampling distribution, 

a topic that is taken up next. 
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Sampling Distribution of First-Order Affiliation 

Statistical Model 

Throughout this section we deal only with first-order affiliation, so we will drop the subscripts from α 

and μ. In other words, as in Equation 1, α will stand for the first-order affiliation index and μ will stand 

for the actor‘s maximum mutual affiliation. With this notational convenience established, we start the 

derivation by assuming that the n actors and m events are fixed, and that the ijth entry of the n × m 

affiliation matrix A is 1 with fixed and independent probability p and 0 with probability 1 – p. Such a 

statistical model was first studied in the one-mode case by Gilbert (1959) and by the more widely cited 

Erdös and Rényi (1960). It serves as a useful baseline from which to assess whether or not observed 

features in an empirical network differ from what would be expected by chance. As Alderson (2008) has 

said, this model serves ―as a natural ‗null hypothesis‘ for evaluating properties of network structure‖ (p. 

1051). For example, Aviv, Erlich and Ravid (2008) compared online distance learning networks to an 

Erdös-Rényi baseline. Kang (2007) used this statistical model to explore the relationship between 

degree equicentrality and degree centralization, Mizruchi and Neuman (2008) used it to examine bias 

in network autocorrelation models, and Field, Frank, Schiller, Riegle-Crumb and Muller (2006) used it 

to generate the sampling distribution of their clustering coefficient in two-mode data. Ko, Lee and Park 

(2008) used this statistical model to explore degree and closeness centrality, and Faust (2008) used it 

to generate the distribution of the triad census. Finally, Chung and Lu (2001) have noted its application 

to the Internet. 

Under the assumption that the elements of the affiliation matrix are generated independently, many of 

the variables of interest will have a binomial distribution. So that it can be used in the sequel, we define 

it now. Let X be a discrete, random variable. Let v be a nonnegative integer and let p be a real number 

such that 0 ≤ p ≤ 1. Then X has a binomial distribution with parameters v and p if, for any nonnegative 

integer k ≤ v, the probability that X equals k is given by the probability mass function 

 kvk pp
k

v
kXPkb 








 )1()()( .       (2) 

To avoid cluttering the notation, we will not make the dependence of b on its parameters explicit in the 

symbols, but rather will simply state what the parameters are if it is not already apparent.  

When p is the probability that the ijth entry of A is 1, and when v = m, then, for actor vi, b(k) is the 

probability that this actor attends exactly k events—that is, b(k) is the probability that d(vi) = k. The 

associated cumulative distribution function (cdf) is 
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If X is distributed other than as a binomial, we will denote its probability mass function by fX and its 

cumulative distribution function by FX. 
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Derivation of the Distribution 

Consider the nth and final actor—actor vn with degree d(vn). We do so to simplify notation. If instead we 

choose, say, the ith actor, then many of our summations would have to be split into two: one summation 

for actors 1 through i – 1 and one for actors i + 1 to n. It is notationally simper to focus on the nth actor 

and have a single summation running from 1 to n – 1. Note, however, that the argument below is 

completely general; once we have derived the desired sampling distribution for the maximum mutual 

affiliation of vn, the same formulae work for any actor (of course, using that actor‘s degree rather than 

vn‘s). 

Without loss of generality, then, consider actor vn. If this actor is of very low degree then it is highly 

likely that μ(vn) is very close to d(vn). Alternatively, if d(vn) is very large, then it is extremely unlikely 

that μ(vn) is very near zero, on the one hand, or very near d(vn), on the other. Most likely it is 

somewhere in the middle. Thus, the degree of an actor influences in large part the actor‘s maximum 

mutual affiliation. Consequently, we will proceed by conditioning on degree and deriving the 

distribution of μ, from which we will be able to deduce likelihood of a given actor‘s first-order affiliation. 

The first question to ask is how many events vn shares with another actor vi, i ≠ n. There are exactly 

d(vn) columns in the nth row of the affiliation matrix that are equal to 1 (with the rest being equal to 0). 

If we look in these same d(vn) columns in the ith row and call 1 a ―success‖ and 0 a ―failure‖ then we 

have a sequence of d(vn) Bernouilli trials with probability of success equal to p. Now let Q be the 

number of the d(vn) events shared by vn and vi. Q is distributed as a binomial with parameters d(vn) and 

p: 

 )()( kbkQP  .         (4) 

What we are really after though is whether or not μ(vn) = k, that is whether or not the largest number of 

events that vn shares with another actor is k. Focusing again on vi, three outcomes are of significance: 

whether vn and vi share fewer than k events, exactly k events, or more than k events. The probabilities of 

these three outcomes are: 
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where B is the cumulative distribution of the binomial with parameters d(vn) and p, and where b is its 

probability mass function. 
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Now, consider the other n – 1 actors and their mutual affiliations with vn. Let Q1 be the number of actors 

having a mutual affiliation with vn of less than k, let Q2 be the number with a mutual affiliation of 

exactly k, and let Q3 be the number with a mutual affiliation of more than k. The likelihood that Qi = ki, 

for i = 1, 2, 3, is the multinomial probability 
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321
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Thus, to obtain the probability that μ(vn) = k, we merely need to note each of the ways that this result 

can occur, weight by the probability given in Equation 8, and add. The possible values of Q1, Q2, and Q3 

that would result in μ(vn) = k are shown in Table 3. Examining the first row of the table we see that μ(vn) 

would equal k if exactly 1 actor shared k events with vn and the other n – 2 actors shared fewer than k 

events with vn. Similarly, from the second row, if there are exactly 2 actors that share k events with vn 

and n – 3 that share fewer than k events then the maximum mutual affiliation would again equal k. 

Table 3 was constructed by noting, first, that Q3 must always be equal to zero (because if an actor shares 

more than k events with vn then k is not maximum) and by noting, second, that Q2 must always be 

greater than or equal to 1 (and thus the remaining actors must all share fewer than k vertices with vn).  

 
Table 3. Ways in Which μ(vn) = k and Their Associated Probabilities 

___________________________________________________________ 
 

  Q1 Q2 Q3 Probability 
___________________________________________________________ 
 

 n – 2 1 0 P(n – 2, 1, 0) 
 n – 3 2 0 P(n – 3, 2, 0) 
 n – 4 3 0 P(n – 4, 3, 0) 
 . . . . 
 . . . . 
 . . . . 
 1 n – 2 0 P(1, n – 2, 0) 
 0 n – 1 0 P(0, n – 1, 0) 
___________________________________________________________ 
 

Note: Q1, Q2, Q3 are, respectively, the number of actors with less than, equal to, or greater than k shared 

events with actor vn. The notation P(x, y, z) in the fourth column is shorthand for P(Q1 = x, Q2 = y, Q3 = z)  

as in Equation 8. 

 

Adding up all the ways that the maximum mutual affiliation could equal k and weighting by the 

associated probability in Table 3, we arrive at the probability mass function: 
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Equation 9 gives the probability that an actor with a specified degree has a maximum mutual affiliation 

of exactly k. We can simplify Equation 9 somewhat. First note that p3
0 as well as 0! in the denominator 

of the fraction are both equal to 1, and thus drop out. Then note that the remaining fraction is the 
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number of combinations of n – 1 objects taken i at a time. Thus we obtain 
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We can make further progress by adding and subtracting a term for i = 0. Doing so lets us run the 

summation from 0 to n – 1, putting it in a form that allows us to use the Binomial Theorem: 
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where the third line of Equation 11 follows from the second by applying the Binomial Theorem to the 

expression in brackets, and where the fourth line follows from the third by using the definitions of the 

pis in Equations 5 and 6. Recognizing that B(k) = B(k – 1) + b(k), we see that the probability mass 

function can be conveniently expressed as a difference of (exponentiated) binomial cdfs 
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The cumulative distribution function is 
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The parameters of the binomial cdfs in Equations 12 and 13 are the degree of the actor and the baseline 

probability of event attendance, p, which in most applications would be the density of the affiliation 

matrix (i.e., p = (nm)-1Σaij). 

We will say that a random variable has an A (n, d, p) distribution if its cdf is given by Equation 13. With 

respect to affiliation networks, if we take an actor‘s first-order affiliation index and multiply through by 

the degree of the actor, then the resulting test statistic (μ) has an A (n, d, p) distribution, where n is the 

number of actors in the network, d is the degree of the actor, and p is the density of the affiliation 

matrix. 
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An actor with a very low affiliation score will have a percentile in the left-hand tail of the distribution. In 

particular, an actor with maximum mutual affiliation equal to k will have a first-order affiliation index 

of α = k /d or lower with probability 

).()( kFkP            (14) 

If this probability is less than .05 (or whatever alpha level the researcher selects), then the actor‘s 

affiliation score is significantly less than would be expected by chance. Alternatively, for large affiliation 

indices, the appropriate right-hand tail probability is 

 )1(1)(  kFkP  .        (15) 

If this probability is less than the selected alpha level, then the actor has a first-order affiliation score 

significantly higher than expected by chance. 

Because they are based on binomial cdfs, the percentiles of the A (n, d, p) distribution are 

straightforward to calculate. Tables of binomial cdfs are given in many standard statistics texts (e.g., 

Guenther 1973, and Wonnacott and Wonnacott 1990), and there are many fast and accurate cumulative 

binomial calculators on the Internet. Applying Equations 15 and 16 to the hypothetical data of Figures 1 

and 2, we find three significant results. First, actor H with a degree of 8 and a maximum mutual 

affiliation of 1 has an affiliation index significantly less than expected by chance. The likelihood of an 

actor with this degree having such a low affiliation score is .0057, which is easily significant at the .01 

level, one-tailed. Second, actor G also has a degree of 8 but a maximum mutual affiliation of 6. The 

probability of an actor with degree 8 attending 6 or more events is .0061, again significant at the .01 

level, one-tailed. Finally, actor E has a degree of 9 and a maximum mutual affiliation of 6, which leads 

to a righthand tail probability of .0155, significant at the .05 level, but not the .01 level. Doing similar 

computations for the rest of the actors, we see that none of them have significant first-order affiliation 

scores. The conclusion, then, is that actor H is significantly less affiliated than expected by chance, and 

actors E and G are significantly more affiliated than expected by chance; the remaining actors have first-

order affiliation scores that are statistically the same as if events were attended at random. 

 

An Empirical Example 

In this section, we apply the first-order affiliation index and its sampling distribution to an empirical, 

two-mode network. Consider Table 4, which shows the affiliation matrix of 20 corporate directors (the 

actors) and their memberships in social clubs and various corporate, museum, and university boards of 

directors or trustees (the events), as reported by Barnes and Burkett (2010). There are 99 edges in this 

network, giving a density of .21. Table 5 shows the co-occurrence matrix, and Table 6 shows the first-

order affiliation scores of the directors along with various two-mode centrality scores, normalized to a 

0-1 scale. UCINET 6 (Borgatti, Everett and Freeman 2002), which was used to compute the centralities, 

adjusts the denominators of the centrality measures for two-mode networks compared to one-mode 

networks. For example, to normalize degree centrality, one divides the degree by the maximum possible 

degree, which in a one-mode network is one fewer than the number of vertices in the network. In an 

affiliation network, the appropriate denominator is the number of events because actors cannot be 

neighbors of other actors. UCINET makes similar adjustments for the other centrality measures as well. 

(For details, see Borgatti and Everett 1997.) 
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Table 4. Affiliation Matrix of 20 Corporate Directors 

________________________________________________________________ 

 
1 2 3 4 5 6 7 8 9 

1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

                         

Barr 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 

Block 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 

Chewning 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Clark 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

Cushman 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Eberhard 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Freeman 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

Gale 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 

Goodrich 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 

Ingersoll 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 

Jarvis 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 

Kennedy 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 

Livingston 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 

McCormick 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 

McDowell 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 

Oates 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 

Prince 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Rockefeller 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 

Swearingen 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Ward 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 

________________________________________________________________ 

Note: Events are numbered as follows. Corporate Boards: 1 = Amour, 2 = Borg-Warner, 3 = Caterpillar Tractor, 

4 = Chase Manhattan Bank, 5 = Commonwealth Edison, 6 = Container Corp. of America, 7 = Continental 

International Bank and Trust, 8 = Equitable Life Assurance, 9 = First National Bank of Chicago, 10 = Inland 

Steel, 11 = International Harvester, 12 = John Hancock Mutual, 13 = Sears and Roebuck, 14 = Standard Oil, 15 

= Swift. Museums: 16 = Art Institute of Chicago, 17 = Museum of Science and Industry. University Boards: 18 = 

Northwestern Univ., 19 = Univ. of Chicago. Social Clubs: 20 = Century, 21 = Chicago, 22 = Commercial, 23 = 

Indian Hill, 24 = Links. 
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Table 5. Co-Occurrence Matrix for 20 Corporate Directors 

________________________________________________________________ 

________________________________________________________________ 

           1 1 1 1 1 1 1 1 1 1 2 

  1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 

                      

1 Barr 5 2 0 1 0 1 2 3 3 2 3 4 2 3 2 3 0 0 0 3 

2 Block 2 5 0 0 1 1 2 3 1 2 2 2 3 2 2 3 1 0 1 2 

3 Chewning 0 0 2 2 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 

4 Clark 1 0 2 3 0 1 1 1 1 1 0 1 2 1 0 1 2 0 0 1 

5 Cushman 0 1 0 0 2 1 1 0 0 1 0 0 2 1 1 1 1 0 1 0 

6 Eberhard 1 1 0 1 1 3 3 1 1 2 0 1 2 2 1 2 1 0 1 1 

7 Freeman 2 2 0 1 1 3 6 1 2 5 1 2 3 3 2 3 1 0 1 2 

8 Gale 3 3 0 1 0 1 1 7 1 2 2 3 2 1 0 3 0 0 0 2 

9 Goodrich 3 1 0 1 0 1 2 1 4 2 3 4 2 4 2 2 0 0 0 3 

10 Ingersoll 2 2 0 1 1 2 5 2 2 6 1 2 3 3 2 3 1 0 1 2 

11 Jarvis 2 2 0 0 0 0 1 2 3 1 6 5 2 3 2 2 0 1 0 3 

12 Kennedy 4 2 0 1 0 1 2 3 4 2 5 7 3 4 2 2 0 1 0 5 

13 Livingston 2 3 1 2 2 2 3 2 2 3 2 3 9 4 2 3 2 1 2 3 

14 McCormick 3 2 0 1 1 2 3 1 4 3 3 4 4 6 3 3 1 0 1 3 

15 McDowell 2 2 0 0 1 1 2 0 2 2 2 2 2 3 3 2 1 0 1 1 

16 Oates 3 3 0 1 1 2 3 3 2 3 2 2 3 3 2 9 1 4 2 2 

17 Prince 0 1 2 2 1 1 1 0 0 1 0 0 2 1 1 1 3 0 1 0 

18 Rockefeller 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 4 0 5 1 1 

19 Swearingen 0 1 0 0 1 1 1 0 0 1 0 0 2 1 1 2 1 1 3 0 

20 Ward 3 2 0 1 0 1 2 2 3 2 3 5 3 3 1 2 0 1 0 5 
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Table 6. First-Order Affliliation and Two-Mode Centrality for 20 Corporate Directors 

________________________________________________________________ 

Director Affiliation Degree Closeness Betweenness Eigenvector 

________________________________________________________________ 

Barr 0.800  0.208  0.564  0.024  0.261 

Block 0.600  0.208  0.585  0.034  0.224 

Chewning 1.000  0.083  0.373  0.002  0.019 

Clark 0.667  0.125  0.534  0.041  0.099 

Cushman 1.000  0.083  0.492  0.006  0.070 

Eberhard 1.000  0.125  0.564  0.019  0.150 

Freeman 0.833*  0.250  0.608  0.078  0.263 

Gale 0.429  0.292  0.574  0.061  0.213 

Goodrich 1.000* 0.167  0.554  0.011  0.243 

Ingersoll 0.833* 0.250  0.608  0.077  0.264 

Jarvis 0.833*  0.250  0.554  0.034  0.242 

Kennedy 0.714  0.292  0.596  0.051  0.330 

Livingston 0.444  0.375  0.674  0.197  0.329 

McCormick 0.667  0.250  0.608  0.050  0.319 

McDowell 1.000  0.125  0.554  0.009  0.186 

Oates 0.444  0.375  0.660  0.199  0.314 

Prince 0.667  0.125  0.517  0.033  0.079 

Rockefeller 0.800  0.208  0.456  0.023  0.075 

Swearingen 0.667  0.125  0.508  0.017  0.083 

Ward 1.000**  0.208  0.574  0.023  0.268 

________________________________________________________________ 

*p < .05, one-tailed; **p < .01, one-tailed. 

 

Examining the diagonal of Table 5, we see that the directors attended anywhere from a low of two 

events (Chewning and Cushman) to a high of nine events (Livingston and Oates). But attending many 

events does not mean that these events are shared with another actor. Examining Table 6, however, one 

sees that there are no actors with extremely low affiliation scores. The lowest proportion of an actor‘s 

events shared with another actor is just under 43 percent (Gale), while many of the directors share all of 

their events with at least one other actor. 

Using Equations 14 and 15 to compute significance levels, one finds that none of the actors are 

significantly less affiliated than expected by chance. Five actors, however, are significantly more 

affiliated than expected by chance, four at the .05 level and one at the .01 level (all one-tailed). Two of 

them (Goodrich and Ward, p = .034 and p = .007, respectively) share all of their events with another 

actor, and the remaining three (Freeman, Ingersoll, and Jarvis, all with p = .035), each of degree six, 

share all save one of their events with another actor. Note that having a first-order affiliation of 1.00 

does not assure significance. The degree of the actor also needs to be high enough that we can be 

confident that the shared events are not due to chance. For example, an actor of degree 2 in a 20-actor 

network with a density of .21, has a .562 probability of sharing both of those events with another actor, 

not something we would ordinarily call significant; it is just too easy for such an actor to reach a first-
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order affiliation of 1.00. For an actor of degree 3, the probability of sharing all of those events with 

another actor drops to .154, and by the time we reach degree 4 the probability is low enough (.034) that 

we conclude that the observed affiliation score is not due to chance. 

Note importantly that, as in the hypothetical network of the previous section, having a high degree does 

not necessarily mean that the actor will be highly affiliated in the network. In fact, none of the actors 

with the highest degrees (Livingston and Oates, each with degree 9, and Gale and Kennedy, each with 

degree 7) are significantly more affiliated than expected, although Kennedy is close (p = .097). Overall, 

the first-order affiliation scores fail to match the degree centralities as well as the other three centrality 

measures. In fact, as Table 7 shows, first-order affiliation is actually negatively correlated with the 

centrality measures for this network, a possibility remarked upon previously, and one that 

demonstrates that centrality and affiliation are quite different ideas. Whereas central actors may attend 

many events, or be between or close to other actors and events, affiliation specifically takes into account 

the nature of the shared events that actors have. Measuring affiliation is thus a purely two-mode idea. 

Centrality is, at its essence, a one-mode idea that we have tried to adapt (perhaps imperfectly) to the 

two-mode case; the notion of shared events does not even make sense in the one-mode case, and a 

measure of affiliation is thus most appropriate for two-mode data.  

 
Table 7. Correlation Matrix 

________________________________________________________________ 

 

  Affiliation Degree Closeness Betweenness Eigenvector 

________________________________________________________________ 

 Affiliation --- -.669 -.503 -.695 -.334 

 Degree  --- .781 .832 .822 

 Close   --- .721 .884 

 Between    --- .578 

 Eigen     --- 

________________________________________________________________ 
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Discussion 

This article has introduced a family of affiliation indices for two-mode networks having a bipartite 

representation. One of these indices—first-order affiliation, which is based on the largest proportion of 

events that an actor has in common with another actor in the network—was examined for its sampling 

characteristics. Using the Erdös-Rényi statistical model, the distribution of this measure was derived 

and was found to be conveniently expressible as a difference of binomial cdfs. One can use this 

distribution to test whether an actor‘s first-order affiliation is more or less likely than expected by 

chance. 

In terms of future directions, because the first-order affiliation index can be somewhat course, some 

guidance is needed in selecting a higher-order affiliation index if one wants a finer-grained measure. It 

is a simple matter to compute affiliation indices of all orders, so this decision could be made on an ad 

hoc basis, though in a very large network, such a procedure would require the researcher to examine 

perhaps thousands of individual scores. An alternative would be to compute affiliation indices on a 

number of empirical networks to see if some pattern or rule of thumb can be developed to guide the 

decision of what order affiliation index to use. 

A second direction of future research would be to derive the sampling distribution for higher order 

affiliation indices. Although it is not clear that a convenient, closed form expression can be found, it 

nonetheless might be possible to use previous results in order to obtain new results. For example, to 

derive the distribution of second-order affiliation, which depends on the sum μ1 + μ2, one could make an 

argument analogous to the one above to compute the conditional probability of μ2 given μ1. This 

quantity, when combined with Equation 12, gives us the joint distribution of μ1 and μ2. Whether such a 

procedure can be easily extended to other orders is an open question. 

Until a convenient mathematical expression can be found, we can fall back on Monte Carlo analysis, in 

which one randomly generates a large number of affiliation matrices with the given row sums. 

Affiliation indices of various orders can be computed each time, giving a simulated distribution from 

which we can obtain probability values. Alternatively, a permutation approach could be used where 

actors are randomly assigned to events in ways that match event size, giving a comparison distribution. 

Affiliation networks have wide applications in the social sciences, and, because of their special structure 

relative to traditional, one-mode networks, new tools and measures can fruitfully be developed—tools 

and measures that take advantage of two-mode information. Of particular interest is the way that actors 

are affiliated with other actors by virtue of their mutual attendance at events. This article has introduced 

a family of affiliation indices that captures, to varying degrees (depending on the order of the index), the 

nature of the mutual affiliations an actor has in the network. As more researchers develop tools, 

measures, and techniques such as those in this article, we approach the day when two-mode networks 

will be on an equal methodological footing with one-mode networks. 
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