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ABSTRACT:  Data structures comprising many binary variables can be represented 
graphically in various ways. Depending on the purpose different plots might be useful. 
Here two ways of showing associations between variables and implications between 
variables are discussed. The methods are based on conditional independence graphs 
and lattices of maximal cluster-property pairs. Applications to multivariate samples 
and network data are briefly discussed. 
 

 

1. Introduction 
A Boolean or binary data structure is typically given as an  n  by  m  data matrix  (xij)  of 

entries from  {0,1}. The  n  rows represent units of some kind, often called individuals, 

objects, or cases, and the  m  columns represent binary variables or attributes defined on 

these units. The presence or absence of the jth attribute at the ith unit is designated by  

xij=1  and  xij=0, respectively. Let  U={1,...,n}  and  V={1,...,m}  denote the sets of 

(integer labels of) units and attributes. The variables and their values are denoted by  

x1,...,xm. Thus  xj=xij  is the value taken by  xj  for the ith unit. The ordered sequence  

x=(x1,...,xm)  of variables represent combinations of attributes which are often called 

properties. There are  2m  distinct properties. The properties of the  n  units are given by the 

rows  ai=(xi1,...,xim)  of the data matrix. The properties of the  n  units can also be 

represented as subsets  Ai={j∈ V : xij=1}  of attributes. Thus the information in the data 

matrix is given by  n  binary m-sequences or, equivalently, by  n  subsets of  V. Unless  m  

is very small, it is not straightforward how to gain insight into the structure of properties 

present in data. When the number of attributes is moderate or large, many properties might 

have small frequencies, and when  n  is small compared to  2m  many properties do not 

occur. The properties that occur might be related in various ways. Useful information 

about the inherent structure in data might be exhibited in plots of different kinds. 

Graphical methods as a major tool of efficient data analysis is well known (Tukey (1977), 
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Chambers et al (1983), Tufte (1983)) and this article focus on plots for describing and 

testing associations and implications between properties. 

 

The next section introduces further notation and concepts needed in order to explore 

independence and conditional independence with methods developed for general 

multivariate loglinear models. The books by Whittaker (1990) and Edwards (1995) give 

introductions to graphical modeling in statistics. The association graphs introduced in 

Section 3 are varieties of conditional independence graphs appropriate for random samples 

of binary data. Section 4 discusses modifications appropriate for non-sample data. 

 

Implications between properties are investigated in Section 5. A single attribute  j  is 

present for the units indicated by 1-entries in the jth column  bj=(x1j,...,xnj)  of the data 

matrix. These units are also given by the subset  Bj={i∈ U : xij=1}. The subsets  B1,...,Bm  

are called clusters of units corresponding  to the different attributes. The clusters  Bj  that 

correspond to the attributes present for the ith unit have one or more units in common. The 

systematic study of maximal clusters of units having certain attributes in common leads to 

an interest in the maximal set of attributes in common to the units of a cluster. The 

maximal cluster and property pairs are partially ordered and can be represented in a lattice 

diagram (Wille (1982, 1984)). This diagram can be used in order to deduce implications 

between the attributes. Section 6 embeds the implications in conditional probability 

statements and shows how bipartite graphs can be used to represent probabilistic 

implications concerning the presence and absence of different attributes. Section 7 finally 

gives some brief comments on extensions and applications of the methods. 

 

 

2. Statistical Theory 
Let  U={1,...,n}  and  V={1,...,m}  be the sets of  units and attributes. The binary variables  

x1,...,xm  indicate presence (1) or absence (0) of the attributes, and the sequence  

x=(x1,...,xm)  specifies a property. It is natural to talk about properties even if only a 

subsequence of  x  is specified. Thus with  m=3  the property  x2=0, x3=1  is specified by  

x=(∗ ,0,1)  where  ∗   is used to indicate an unspecified attribute. 
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The binary data matrix  (xij)  has rows  ai=(xi1,...,xim)  that specify the properties of the 

units, and columns  bj=(x1j,..,xnj)  that specify the clusters of the attributes. The property as 

a subset of  V  is given by  Ai  for the ith unit, and the cluster as a subset of  U  is given by  

Bj  for the jth attribute. If we consider the data matrix as an adjacency matrix of a bipartite 

graph on the set of rows  U  and columns  V, we can also think of  Ai  as the set of 

columns after the ith row and  Bj  as the set of rows before the jth column. 

 

For any binary m-sequence  x, the number of units with property  x  is given by 

 n x I a xi
i

n

( ) ( )= =
=
∑

1
 

where  I  is an indicator function equal to 1 or 0 according to whether or not the argument 

of  I  is true. The relative frequency of property  x  is denoted by 

 $p x n x( ) ( )= /n.  

The marginal frequencies  $pi  , $pij  , ...  are obtained by summing  $p (x)  over all  x  with  

xi=1, with  xi=xj=1, etc. If   $p (x)  is considered as an estimate of a probability distribution 

 P(X=x)=p(x) 

over properties, then the marginal frequencies   $pi  , $pij  , ...  estimate the expected values  

EXi=pi,  EXiXj=pij,... . More generally we write the marginal probabilities 

 p x p x xi i ij i j( ), ( , ),... 

when we need to specify other values than 1 or   xi,xj,... . 

 

Assuming that the properties of the  n  units are independent observations on the random 

property  X, we get the likelihood function 

 L p p a p x
i

n

i x

n x( ) ( ) ( ) ( )= =
=
Π Π

1
 

and it follows that 

 log ( )L p =
x

n x p x nH nD p p∑ = − −( ) log ( ) $ ( $ , )  
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where 

 $ $( ) log $( )H p x p x
x

= −∑  

is the entropy of the empirical distribution  $p   and 

   D p p p x p x p x
x

( $ , ) $( ) log[ $( ) / ( )]= ∑    

is the information divergence from the empirical distribution $p  to the theoretical 

probability distribution  p. All sums are understood to be over  x  with  p(x)>0. According 

to information theory (Hamming (1980) is an introductory text and Kullback (1959) a 

general statistical reference) the divergence  D( $p ,p)  is non-negative, and it is zero if and 

only if  p= $p . If  p  is restricted according to some model imposing  r  restrictions, then the 

maximum likelihood is obtained for minimum information divergence. Let ~p   denote this 

optimal distribution. It follows that the loglikelihood ratio test  statistic is 

 
[ ]2 2log ( $) / ( ~) ( $ , ~),L p L p nD p p=

 

and it is asymptotically  χ2 -distributed with  r  degrees of freedom when  n  tends to 

infinity. 

 

In particular, the model assumption that  Xi and  Xj  are independent imposes one 

restriction  pij=pipj, and it follows that 

 p x p x p x p x x xi i j j k ij k i j( ) ( ) ( ) ( | , )|=  

where  k is the subsequence of all attributes except  i  and  j, and  xk  is the subsequence of  

x with  xi  and  xj  removed. Now  D( $p ,p)  is minimized for  p=~p   given by 

 ~( ) $ ( ) $ ( ) $ ( | , ),|p x p x p x p x x xi i j j k ij k i j=  

and the likelihood ratio can be simplified to 

 $( ) / ~( ) $ ( , ) / $ ( ) $ ( ).p x p x p x x p x p xij i j i i j j=  
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This leads to 

 D p p H H Hi j ij( $ , ~) $ $ $= + −  

where  $H i  and  $H ij  are entropies of empirical marginal distributions. Thus we have a 

simple form of the test statistic  2nD( $p ,~p )=Dij. Values of  Dij  larger than 4 are critical at 

approximately 5% significance level. 

 

An alternative model specifying that  Xi  and  Xj  are conditionally independent when  Xk, 

the rest of  X, is fixed implies that 

 p x p x x p x x p xi k i k j k j k k k( ) ( | ) ( | ) ( )| |=  

where  k  is the subsequence of  1,...,m  with  i  and  j  removed, and  xk  is the 

subsequence of  x  with  xi  and  xj  removed. It follows that 

 D p p H H H Hik jk ijk k( $ , ~) $ $ $ $ .= + − −  

 

There is one restriction for each outcome of  xk, that is  r=2m-2. Therefore the test statistic 

 D nD p pij = 2 ( $ , ~)  

is asymptotically  χ2-distributed with  2m-2  degrees of freedom, and the 5%-level critical 

value is about  2m-2+2(m+1)/2. 

 

 

3. Association Graphs 
Guided by the large sample theory in the previous section we first check the variables for 

pairwise independence by drawing a graph with the attributes as vertices and an edge 

between the ith and jth vertex if the test statistic 

 D n H H Hij i j ij= + −2 ( $ $ $ )  

is above some chosen critical value from the  χ2-distribution with 1 degree of freedom. By 

adjusting the critical value we try to get a graph consisting of complete or almost complete 

connected components (with no or almost no edge between components). The rationale 

behind this is that strong pairwise dependence is close to functional dependence, and 
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pairwise functional dependence between non-constant binary variables is a transitive 

relation. Vertices in distinct connected components represent independent variables. After 

having the set of variables split into independent subsets, the analysis can proceed 

separately with each subset. 

 

The next step is to test a set of dependent variables for pairwise conditional independence. 

By conditioning successively on an increasing number of variables, we hope to achieve 

more reliable results than what would be possible by conditioning on all remaining 

variables when  n  is relatively small. In order to test conditional independence of  Xi  and  

Xj  with a conditioning sequence  Xk  we use the test statistic 

  D n H H H Hijk ik jk ijk k= + − −2 ( $ $ $ $ ) 

and critical values from the χ2-distribution with  2|k|  degrees of freedom, where  |k|  is the 

length of  k,  that is the number of attributes in the conditioning sequence. For each pair  

(i,j)  there are  ( )m
k
−2

| |
  values  Dijk  with  k  of a fixed length  |k|. A graph can be drawn for 

each value of  |k|=1,2,..., m-2  by inserting an edge between  i  and  j  if the maximum 

value  Dijk   is sufficiently large. Maximum is here taken over  m-2  values   k  for the first 

graph, over  ( )m
2
−2  values  k  for the second graph, etc. In this way we obtain a sequence 

of  m-2  graphs, and only the last one, corresponding to the conditioning on all remaining 

variables, is a conditional independence graph in the sense understood in loglinear 

modeling (Whittaker (1990), Edwards (1995)). The choice of critical values for the 

maximum values of  Dijk  is not easily based on theoretical grounds, but can perhaps be 

guided by the requirement that the sequence of graphs should be non-decreasing. 

 

 

4. Association Under Randomization 
If the properties of the  n  units cannot be considered as a sample of independent 

observations from a common probability distribution, we might still want to get a 

description of the multivariate structure of the data. Such a description could be useful as a 

summary or as a tool for extracting hidden features and patterns. 
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We consider the empirical distribution as the probability distribution of interest and use the 

entropies as descriptive measures of spread. There are also natural measures of association 

based on information theoretic concepts (See for instance Goodman and Kruskal (1979)). 

We recall the fact that the entropy  H(X)  of a random m-sequence  X  satisfies 

 0 2≤ ≤H X m( ) log  

with the extreme values attained for a one-point and a uniform distribution only. 

Furthermore, for a partition of  X=(Xk,Xl)  into two parts, the conditional entropy  

H(Xk|Xl)  has an expected value satisfying 

 0 ≤ = − ≤EH X X H X X H X H Xk l k l l k( | ) ( , ) ( ) ( )  

with the minimum value attained if and only if  Xk  is functionally dependent on  Xl   and 

the maximum value attained if and only if  Xk  is stochastically independent of  Xl. The 

difference 

  H X EH X X H X H X H X Xk k l k l k l( ) ( | ) ( ) ( ) ( , )− = + −  

is symmetrical in the two parts  Xk   and  Xl, and it is a measure of their degree of 

dependence or association. This measure is equivalent to the information divergence from 

the simultaneous distribution of  Xk  and  Xl  to the product of their marginal distributions. 

Thus the test statistics  Dij  used for the association graphs can be interpreted as empirical 

measures of association. Critical values of such measures can be obtained by introducing 

some kind of randomization in the data matrix, and using this we can judge whether the 

actual data matrix is extreme with respect to its value of association. In particular, it is of 

interest to know what range of association values there is under randomization. 

 

If we randomize by keeping fixed all marginal distributions of single attributes, then  

p1,...,pm  and  H1,...,Hm  are all fixed, and  Hij  and  Dij=2n(Hi+Hi-Hij)  vary with  pij   only. 

In order to specify the range of possible values of  Hij  it is convenient and no restriction to 

assume that 

 p pm1 ≤ ≤ ≤... ½   and  H Hm1 ≤ ≤... . 
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Attributes might have to be replaced by their complements in order to achieve that they 

have their presence at most as common as their absence. The labeling of attributes 

according to non-decreasing probabilities implies non-decreasing entropies, since  Hi  is an 

increasing function of   pi  for 0<pi ≤ ½. If we define the function 

 ϕ ( ) logp p p= −   for  0 1< ≤p  

 ϕ ( )0 0=  

entropies can be expressed as 

 H X p x
x

( ) ( ( ))= ∑ ϕ  

 H p pi i i= + −ϕ ϕ( ) ( )1  

 H p p p p p p p pij ij i ij j ij i j ij= + − + − + − − +ϕ ϕ ϕ ϕ( ) ( ) ( ) ( ).1  

By differentiating  Hij  with respect to  pij  we find that  Hij has a maximum value  Hi+Hj  at 

pij=pipj, and  Hij is a unimodal function of  pij taking its minimum value at the lower 

boundary of its domain 

 0 ≤ ≤p p pij i jmin( , ). 

The minimum value is 

 minH p p p pij i i i j= + + − −ϕ ϕ ϕ( ) ( ) ( ).1  

It follows that  Dij  is a unimodal function of  pij  with minimum value 0 at  pij=pipj  and 

maximum value 

 max [ ( ) ( ) ( )]D n p p p pij i j i j= − + − − − −2 1 1 1ϕ ϕ ϕ  

at the lower boundary of the domain  0≤pij≤min(pi,pj). Hence the critical region of  pij-

values is one-sided or two-sided depending on whether or not the critical association level  

is above the value of  Dij  at the upper boundary, that is 

 2 1n p p p pi j j i[ ( ) ( ) ( )]ϕ ϕ ϕ− + − −   for i<j. 
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The association  Dij  is generally larger for negative than for positive deviations pij-pipj  of 

the same absolute value. An alternative association measure given by the Pearson 

correlation coefficient in this case is 

 ρij ij i j i i j jp p p p p p p= − − −( ) / [ ( ) ( )]½1 1  

and obviously this correlation or its absolute value does not capture the asymmetry of  Dij. 

In fact for  i<j   

 − − − ≤ ≤ − −[ / ( )( ] [ ( ) / ( ) ]½ ½p p p p p p p pi j i j ij i j i j1 1 1 1ρ  

and the absolute value of  ρij  at  pij=0  is not larger than the value at  pij=pi . As a 

consequence we need to multiply negative values of  ρij  by a factor larger than 1 if we 

want to get an association measure that is similar to  Dij. 

 

 

5. Implications 
A property specifying the presence or absence of certain attributes is said to imply another 

property if all units having the first property also have the second property. This first 

property is called the condition of the implication. 

 

In order to investigate implications systematically we can confine ourselves to implications 

concerning single attributes added to the condition, since implications concerning several 

added attributes can be obtained as consequences of those for single attributes. 

 

The specification of attributes that are present or absent can conveniently be referred to as 

subsets of included and excluded attributes, respectively. Thus a property specifying that 

all the attributes in a subset  T1⊆ V  shall be present and all the attributes in a disjoint 

subset  T0 ⊆ V  shall be absent means that we are referring to a cluster  S⊆ U  of units such 

that  T1 shall be included and  T0  excluded from each attribute set  Ai  for  i∈ S, that is  

T1⊆ Ai⊆ T0   for  i∈ S. 

 

Implications from one attribute to another are the simplest. For instance, the absence of the 

ith attribute  (xi=0)  implies the presence of the jth attribute  (xj=1)  if the set of units not 
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having attribute  i  is contained in the set of units having attribute  j. In terms of clusters of 

units representing the attributes, this implication can be specified as  B Bi j⊆ . 

Equivalently the implication can be given as  b bi j≤   in terms of the binary column 

sequences of the data matrix. Here   bi = − −( ,..., ).1 11x xi ni  

 

Consider a cluster  S⊆ U  defined by  T1⊆ Ai⊆ T0   for  i∈ S. Another way of expressing this 

is to say that  S  is the intersection of the clusters  Bj  for  j∈ T1  and  Bk   for  k∈ T0. If we 

define the cluster of units sharing the presence of all attributes in  T  by 

 B T B
j T

j( ) =
∈
I  

and the cluster of units sharing the absence of all attributes in  T  by 

 B T B
j T

j( ) =
∈
I  

for  T⊆ V, we obtain that the cluster of units with property  T1  included and  T0  excluded 

is given by 

 S B T B T= ∩( ) ( ).1 0  

It should be noticed that B(T)  is not the complement of  B(T)  (which could be denoted 

B T( )) but the extension of complements  Bj  to the intersection of such complements. 

 

Analogously we also define the property shared by all units in cluster  S⊆ U  as 

 A S A
i S

i( ) .=
∈
I  

Since  j∈ Ai  and  i∈ Bj  are equivalent, it follows that  S⊆ B(T)  and  T⊆ A(S)  are 

equivalent for all  S⊆ U  and  T⊆ V. Furthermore, S1⊆ S2  implies that  A(S1)⊇ A(S2), and  

T1⊆ T2  implies that B(T1)⊇ B(T2). 

 

If  S⊆ U  and T⊆ V  are related according to 

 S B T= ( )  and T=A(S), 

then the cluster and property pair  (S,T)  is an important concept that is useful for 

analyzing the data matrix. The matrix entries  xij  are 1 if  i∈ S  and  j∈ T, and neither  S  
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nor  T  can be extended with further units or attributes without violating this property. We 

refer to such pairs  (S,T)  as cliques with clique cluster  S  and clique property  T. If we 

consider the data matrix as an adjacency matrix of a bipartite graph between U and V, then 

the cliques are maximal complete bipartite subgraphs. The collection of all cliques is 

partially ordered by clique cluster inclusion (or, equivalently, clique property inclusion 

which reverses the order). The partially ordered set of cliques is a lattice, that is there is a 

smallest clique  (S0,V)  and a largest clique  (U,T0). Here  S0  is the set of units with all 

attributes present, and  T0 is the set of attributes present at all units. These sets may be 

empty. If  (S1 ,T1)  and  (S2,T2)  are distinct cliques, we write  (S1 ,T1)< (S2,T2 )  and say 

that  (S1,T1)  is below  (S2,T2)  if  S1⊆ S2. For such cliques, T1⊇ T2. 

 

The lattice of cliques is called the concept lattice by Wille (1982, 1984). Algorithms for 

constructing the lattice from a data matrix are given by Ganter et al. (1986), Luksch et al. 

(1986) and Duquenne (1987). See also Duquenne (1991). Freeman and White (1993) give 

a good presentation of the lattice and its usefulness in network data analysis. 

 

The importance of the lattice of cliques for finding implications should be clear from the 

following observation. Let  (S,T)  be a clique and  j∈ T  any attribute of the clique property. 

If  T-{j}  is not a property of any other clique, then the presence of attribute  j  is implied 

by the condition  T-{j}. By checking all cliques for implications of this kind, and keeping 

only minimal conditions, we can find all implications with conditions referring to the 

presence of attributes. Implications from conditions referring to both presence and absence 

of attributes can be found in the same way if the data matrix is enlarged with 

complementary variables. We illustrate these ideas by a small example. 

 

Consider the data matrix with  m=4  variables and  n=6  units given by 

1 1 1 0
1 0 0 0
1 1 0 1
1 1 1 1
0 1 1 0
0 0 0 1

 

There are 9 cliques and their lattice is shown in Figure 1.  
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The data matrix extended with 4 complementary variables is given by 

1 1 1 0 0 0 0 1
1 0 0 0 0 1 1 1
1 1 0 1 0 0 1 0
1 1 1 1 0 0 0 0
0 1 1 0 1 0 0 1
0 0 0 1 1 1 1 0

 

Now there are 23 cliques, and their lattice is shown in Figure 2.  

134
 12

F igure 1. C liques of clusters (above) and properties (below) for a  data m atrix w ith 6
units and 4 attributes.

123456
      0
      
     

1345
   2

1234
   1

346
  4

145
 23

 14
123

 34 
124

   4
1234
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A systematic search for implications can be made like the following. If a subset of a 

property clique with one attribute removed is not a property clique, then this subset is a 

condition that implies the presence of the removed attribute. For instance, in Figure 1 the 

property clique 23 has a subset 3 that is not a property clique, so 3 implies 2. Property 

clique 123 has a subset 13 that is not a property clique, so 13 implies 2. This implication is 

redundant since it follows from the previous one. Property clique 124 has subsets 14 and 

24 that are not property cliques, so 14 implies 2 and 24 implies 1. Finally, property clique 

1234 has subsets 134 and 234 that are not property cliques, so 134 implies 2 and 234 

Figure 2. Cliques for the data matrix of Figure 1 with the complementary attributes added.

123456
     0

1234
   1

1345
   2

125
  4

236
  3

346
  4

134
 12

145
 23

56
 1

12
14

23
13

26
23

36
43

 14
123

 15
234

 34
124

    1
1234

   2
1234

   3
1243

   4
1234

   5
2314

   6
4123

       0
12341234

- - - -

- - -- - - - -- -

-

- - ---

-

-
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implies 1. Both are redundant. The implications with minimal conditions are given 

symbolically and with cluster interpretations as follows 

3⇒ 2 B3⊆ B2 

14⇒ 2 B1∩B4⊆  B2 

24⇒ 1 B2∩B4⊆  B1. 

From Figure 2 we obtain in a similar manner the following implications: 3⇒ 2, 24 ⇒ 3, 

14⇒ 2, 24⇒ 1, 12 3 ⇒ 4 , 13 4 ⇒ 2 , 2 3 4 ⇒ 1, 123 ⇒ 4, 123⇒ 4 , 1 34⇒ 2 , 2 34⇒ 1, 

1 2 3 ⇒ 4 where j  denotes absence of attribute  j, that is presence of the complement of  j. 

 

 

6. Probabilistic Implications 
Property  T1⊆ V  implies property  T2⊆ V  if  B(T1)⊆ B(T2)  so that all the units having  T1 

also have  T2. By relaxing the requirement that all units in  B(T1)  should be included in  

B(T2)  and focusing on what proportion of units in  B(T1)  also are in B(T2), the 

implications are generalized to conditional probability statements. 

 

The probability of presence of attribute  j  conditional on the presence of all attributes in  

T1  and the absence of all attributes in  T0  is the conditional expectation of variable  Xj  

given that  Xk=1  for  k∈ T1  and Xk=0  for  k∈ T0. Generally there are  m(3m-1 −1)  

conditional expectations  E(Xj|X=x)  where  x=(x1,...,xm)  is an m-sequence of elements 

from  {0,1,∗ }  with  xj=∗ . Here, as in Section 2, ∗   indicates an unspecified attribute. A 

conditional expectation  E(Xj|X=x)  where  x  has  k  specified attributes and  m-k  

unspecified attributes (including attribute  j) can also be given as 

E(Xj|Xi=xi  for  i=i1,...,ik) 

where  i1,...,ik  are all distinct and distinct from  j, and each  xi  is chosen from {0,1}. There 

are 

m( )m
k
−1 2k 
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such conditional expectations for  k=1,...,m-1. Conditional expectations that are close to 0 

indicate that  Xj  is likely to be 0, and conditional expectations that are close to 1 indicate 

that  Xj  is likely to be 1. 

 

Such probabilistic implications can be shown in a bipartite graph with edges from 

condition vertices to attribute vertices if the conditional expectations are sufficiently far 

from ½. There are  3m-2m-1 condition vertices and  m attribute vertices. Each condition 

vertex with  k  specified attributes has at most  m-k  incident edges, and each attribute 

vertex has at most 3m-1-1  incident edges. Vertices with no incident edges can be omitted. 

If the graph is still too comprehensive, it can be split into the subgraphs induced by the 

attribute vertices, but then some condition vertices might be repeated in different 

subgraphs. Another split of a comprehensive bipartite graph is to separate condition 

vertices into different subgraphs according to their number of specified attributes. With 

specification of one, two or three attributes only, the number of condition vertices is 

substantially reduced for large m. 

 

 

7. Extensions and Applications 
The association graphs discussed in Section 3 need to be tested in practice under varying 

conditions before recommendations can be made concerning the versions which are not 

conditional independence graphs with all  m  variables involved. If we consider whether or 

not  Xi  and  Xj  are conditionally independent given the rest of the sequence  X, and this 

rest is split into two parts  Xk  and  Xl, the question of concern is how misled one can be by 

considering conditional independence of  Xi  and  Xj  given  Xk. In order for this to be 

equivalent to conditional independence given both  Xk  and  Xl, it is required that either  Xi 

or Xj  should be conditionally independent of  Xl  given all the rest, that is given  (Xj,Xk) or 

(Xi,Xk). Obviously we are safe if  Xl  is independent of the rest, but further research and 

experience is needed. 

 

All variables treated here are binary, that is, categorical variables with two categories. 

Categorical variables with more than two categories can be replaced by two or more binary 

variables by coding the outcomes according to a one-to-one transformation. For instance, a 
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variable with 4 outcomes can be replaced by two binary variables by coding the outcomes 

00,01,10,11. Alternatively, it can be replaced by four binary variables by coding the 

outcomes 1000, 0100, 0010, 0001. The last coding yields 12 implications between the new 

variables. There is a vast literature about coding theory, but coding as a tool of data 

analysis is hardly met in the statistical literature. The French school of data analysis is 

much concerned about data types as for instance Benzécri (1980) and Jambu and Lebeaux 

(1983). The psychometric scaling literature pay much attention to data representations; see 

for instance Kruskal and Wish (1978), Young et al. (1980), and DeLeeuw and Tijssen 

(1984). The impact of these approaches on descriptive statistics and data analysis ought to 

be much larger than it is. 

 

The use of entropy and other information theoretic concepts matches both the coding 

theory and the large sample likelihood theory. Information loss by coding (Frank and 

Weidenman (1987) and Frank and Öhrvik (1994)) and data transformations to protect 

individual privacy (Frank (1983, 1988)) are two examples of information theoretic 

approaches to statistical data dissemination that might be of interest in connection with the 

fundamental problem of choosing data to be presented. 

 

The data matrix with units and attributes is one of the most common data structures. If 

units are independent cases, standard statistical multivariate methods are available. 

Applications are then abundant, and some of the graphical methods presented here might 

be a natural part of an initial data analysis. 

 

If the units are not independent, then the graphical plots might still be of interest as data 

displays. The plots can have interpretation of significance in terms of some natural 

randomization procedure. Units might be individuals, households or countries, for 

example, and a natural randomization might be a permutation of all the units. If the units 

are economic transactions between some accounts or social contacts between some actors, 

then a natural randomization might be a permutation of all the accounts or all the actors. 

Such a permutation induces a restricted permutation of the units. Data of this type can be 

obtained from networks with several attributes attached to the edges, that is to the 

transactions or contacts in the examples mentioned. There are other possibilities to analyze 

network data which define the data matrix differently. If we take the rows of the data 
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matrix as the vertices of the network and the columns as the edges, each attribute provides 

one data matrix, the edge incidence matrix of the network for that attribute. Another 

possibility is to take the data matrix as the combined matrix of these incidence matrices 

put side by side with the same rows. Modeling ideas might suggest what is the most 

appropriate form of the data matrix in any particular case. 
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