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Abstract. The influence of social media on societal narratives requires
a thorough understanding of information spread and impact. Building
on previous work using the BEND framework, this study incorporates
new network metrics such as changes in hub centrality, authority cen-
trality, ego-net density (bimodal and unimodal), and ego closeness to
enhance the analysis of influence dynamics on social media. Using exten-
sive Twitter data from polarized topics like the Russian-Ukraine conflict
and the COVID-19 pandemic, we developed predictive models with these
metrics. Despite increased complexity, the multivariate model showed
promise in capturing social media influence. Our findings suggest that
while new metrics provide valuable insights, further refinement, and data
expansion are needed to improve accuracy. This research aids efforts to
combat misinformation and support healthy online discourse.
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1 Introduction

The pervasive influence of social media platforms on societal narratives neces-
sitates a robust understanding of how information spreads and impacts online
communities [3] [5]. Our previous work leveraged the BEND framework to ana-
lyze how agents build influence over time through sequenced messaging within
social media networks. This initial study provided critical insights into identify-
ing optimal points for intervention to disrupt harmful narratives using network
centrality and engagement metrics.

However, the complexity of influence within social networks requires a more
comprehensive analysis [2]. This paper builds on our previous findings by in-
corporating additional metrics that offer a deeper understanding of influence
dynamics [4].

Our central research question for this paper is: How can the incorporation of
additional metrics enhance the identification of optimal intervention points to
counteract harmful influence campaigns on social media?
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To address this question, we extend our methodology to analyze temporal
patterns and sequences of social media interactions, incorporating the new met-
rics to quantify the cumulative impact of influence campaigns. We aim to identify
key moments where interventions can effectively mitigate the spread of harmful
narratives without suppressing healthy discourse.

We collected extensive Twitter data focused on highly polarized topics, in-
cluding the Russian-Ukraine conflict and the COVID-19 pandemic. By applying
the BEND framework alongside the new metrics, we aim to develop predictive
models that provide actionable insights for real-time interventions.

The ultimate goal of this research is to enhance our ability to counteract
misinformation and malicious influence on social media platforms. By under-
standing the detailed dynamics of influence through a broader set of metrics, we
aim to provide valuable insights for policymakers, social media platforms, and
researchers working to preserve the integrity of online discourse.

2 Background

Researchers have demonstrated the value of quantifying an entity’s reach and
influence by examining the network’s structure and the agent’s position within it
[7]. Metrics derived from graph theory offer reliable insights into how an agent’s
location within a network can affect their potential impact [7]. A well-constructed
network model allows for a precise measurement of an individual’s influence
within that community. Our previous work utilized this approach by employing
the BEND framework to analyze and predict how sequenced messaging cam-
paigns can build influence on social media platforms.

In our initial study, we used network analysis and the BEND framework
to investigate the temporal dynamics of influence-building on Twitter [4]. We
focused on identifying key intervention points that could disrupt harmful narra-
tives by examining centrality and engagement metrics. This analysis highlighted
the critical role of network structure and agent positioning in the spread of
influence.

However, existing research often overlooks multiple social media actions’ cu-
mulative and interconnected effects over time. Researchers like Wei and Carley
have made significant strides in analyzing dynamic social networks and tracking
individual behaviors to detect meaningful deviations [8]. These methods transi-
tion static measures of influence into dynamic, time-aggregated assessments. Our
original study aligned with this approach but indicated the necessity for a more
comprehensive set of metrics to capture the complexity of influence dynamics
fully.

The BEND framework, developed by Carley and Beskow, simplifies the anal-
ysis of social media communication by categorizing messages into discrete in-
fluence maneuvers [1]. This framework reduces the complexity of social media
interactions, making it possible to conduct categorical analysis and predict the
general patterns of influence campaigns.
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While our initial application of the BEND framework yielded promising re-
sults, the multifaceted nature of influence within social networks calls for a
broader array of metrics. This paper expands on our previous research by look-
ing at new metrics such as hub centrality, authority centrality, and closeness
centrality. These metrics provide a more detailed and nuanced understanding of
influence dynamics.

3 Methodology

To understand and counteract influence campaigns on social media, we analyze
agents’ actions through a series of coordinated interactions to alter the network
or narrative. By employing the BEND framework, we reinterpret these interac-
tions as time-sequenced maneuvers, allowing us to evaluate both the immediate
and cumulative impacts. Our goal is to pinpoint optimal intervention moments,
thereby preempting harmful narratives’ significant influence without stifling gen-
uine discourse.

3.1 Data Collection and Pre-processing

Our research utilized Twitter data collected using search terms relevant to highly
polarized discussions. We selected influencers based on their demonstrated en-
gagement and reach within these topics, focusing on those with a significant but
not overwhelming influence. This ensured our analysis included agents actively
shaping narratives.

We used the same two main datasets for this study:
Russian-Ukraine Conflict Dataset: Collected over 4.5 million Tweets

from February 11 to August 30, 2022, using conflict-related search terms. Influ-
encers were identified through their use of relevant hashtags and their demon-
strated influence.

COVID-19 Pandemic Dataset:Included Tweets from 2019 to 2020, fo-
cusing on US debates about COVID-19 lockdowns and reopening businesses,
filtered to capture the "re-open" debate in key states.

To prepare the data for analysis, we implemented a preprocessing pipeline
that included tokenizing the tweets to break down the text into analyzable
components, standardizing text formats for uniformity, and removing irrelevant
terms and stop words. This ensured that our datasets were consistent and fo-
cused on substantive content, enhancing the accuracy of our subsequent natural
language processing tasks.

3.2 Describing an Influence Campaign

Using the same key influencers, with the same assumptions that all messages
sent by these users were part of building influence for their influence campaign,
we extracted semantic features. Using Netanomics’ Netmapper software and ap-
plying the BEND framework using Netaomics’ ORA network analysis tool to
classify each message.
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Each tweet was assigned specific BEND maneuvers which allowed us to con-
ceptualize each communication as a series of influence actions. We also consid-
ered the temporal clustering of tweets; if a significant amount of time elapsed
between two tweets from the same user, we treated the latter as the start of a
new campaign. This approach ensured our analysis reflected coherent influence
sequences rather than isolated activities.

3.3 Measuring an Influence Campaign

To measure the success of influence campaigns, we built upon our previous re-
search by incorporating additional network metrics. We again focused on iden-
tifying the cumulative impact of these messages throughout a campaign. We
tracked changes in network metrics surrounding each tweet to capture this cu-
mulative effect, providing a more accurate representation of an agent’s influence
over time.

Our network model is a bimodal-directed graph that maps connections be-
tween users and tweets based on message propagation. In our initial study, we
employed measures such as in-degree centrality, out-degree centrality, and ego
network density to understand the influence dynamics. Building on this foun-
dation, we looked at different metrics to provide a more nuanced analysis of
influence campaigns.

To derive additional unimodal measures, we first folded the bimodal user-
tweet network into a unimodal user-user network. This process involved trans-
forming the original network, which captures interactions between users and
tweets, into a simplified network that focuses on direct interactions between
users. By folding the network, we could analyze how users are directly connected,
rather than through intermediary tweets.

Specifically, we studied the following metrics:

1. Change in In-Degree Centrality (bimodal): Measures the incoming
connections of a given agent, reflecting the number of messages directed
at them or mentioning them. Changes in this metric provide insight into
the importance of the agent and the desire of other agents to solicit their
attention or feedback. Our previous work was able to predict this metric
with a high degree of accuracy.

2. Change in Out-Degree Centrality (bimodal): Measures the outgoing
connections of a given agent, reflecting their level of messaging activity
within the network. A change in this metric may be indicative of a more
receptive or permissive network. Our previous work was able to predict this
metric with a high degree of accuracy.

3. Change in Betweenness Centrality (bimodal): Measures the number
of shortest paths within the network that include the agent in question. A
change in this metric measures the extent to which an agent is becoming a
key information broker within the network.

4. Change in Hub Centrality: Evaluates the influence of an agent based on
their connections to highly connected nodes. This metric helps us understand
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the agent’s prominence within the network. By measuring the change in hub
centrality, we can determine how an agent’s strategic positioning among key
nodes fluctuates over time and influences the broader network.

5. Change in Authority Centrality: Measures an agent’s impact based on
connections from authoritative nodes within the network. Tracking changes
in authority centrality allows us to assess how an agent’s credibility and
influence among recognized authorities evolve, providing insights into their
ability to sway important influencers.

6. Change in Ego-Density (Bimodal): Assesses the local network density
around an agent in a bimodal context, providing an understanding of their
immediate influence within the network. Changes in the ego-net density high-
lighted how closely connected an agent’s immediate network becomes, indi-
cating the effectiveness of their efforts to build a cohesive and influential
sub-network.

7. Change in Total Degree Centrality (unimodal): Measures the number
of agents connected to a given agent. Changes in this measurement reflect
an agent’s increasing connectedness or, conversely, isolation.

8. Change in Betweenness Centrality (unimodal): As previously de-
scribed. Measured in the unimodal network, this provides a different context
for identifying key information brokers.

9. Change in Eigenvector Centrality (unimodal): Indicates the extent to
which an agent’s connections are, themselves, connected. Agents with rising
eigenvector centrality can be seen as increasingly "in the know" across the
network. Our previous work was able to predict this metric with a high
degree of accuracy.

10. Change in Ego Closeness (unimodal): Shows how efficiently an agent
can disseminate information throughout the network. This metric indicates
the agent’s ability to reach other nodes quickly. By examining changes in ego
closeness, we can understand how an agent’s efficiency in spreading messages
evolves, which is crucial for evaluating their real-time impact on information
dissemination.

11. Change in Ego-Net Density (Unimodal): Examines the local network
density around an agent in an unimodal context, showing an agent’s im-
mediate influence in a simplified network structure. This metric helps us
understand the concentration of influence in the agent’s immediate environ-
ment, and how this concentration changes in response to their actions.

For modeling and prediction, we used a random forest regression model to
handle non-linear effects among the 16 binary features. Each user’s tweets were
excluded in turn during leave-one-user-out cross-validation, and the model was
trained on the remaining data. The trained model was tested on the excluded
user’s tweets, and this process was repeated for each user. All metric values were
normalized to the range [0,1] to ensure comparable Root Mean Squared Error
(RMSE) for each variable. Each model’s predictive accuracy was measured with
the R2 coefficient of determination, and the final performance of the model was
scored using the root mean squared error (RMSE). We selected RMSE as our
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measurement because the measured values all fell below 1.0, making the mean
squared error (MSE) an unreliable indicator of error magnitude.

4 Analysis and Follow-on

Our analysis of the predictive models involved examining the performance met-
rics for each of the influence metrics we studied. We summarized the model
results in Table 1, showing the RMSE and R2 values achieved by the best model
for each variable [6].

Summary of Predictive Models
Dependent Average R2 Best R2 Average RMSE
Variable (Training) (Training) (Validation)
Multivariate -1.107 -0.00714 0.0255
∆ Bi In-Deg Cnt -3.318 0.0014 0.00418
∆ Bi Out-Deg Cnt -0.679 0.00496 0.00541
∆ Bi Betw Cnt -0.344 -0.00549 0.027
∆ Bi Hub Cnt -1.703 0.05 9.98E-05
∆ Bi Authority Cnt -4.129 -0.000607 0.00178
∆ Bi Ego-net Dns -0.507 0.082 0.0386
∆ Uni Deg Cnt -1.038 0.0138 0.00523
∆ Uni Betw Cnt -0.407 -0.00665 0.0256
∆ Uni Eigen Cnt -1.051 0.00103 0.0123
∆ Uni Closeness Cnt -1.051 0.00228 0.142
∆ Uni Ego-net Dns -0.493 0.0754 0.0353

Table 1: Performance Metrics of Predictive Models

Model accuracy was significantly lower than in our previous work, where our
best models scored over 0.95 R2. Alarmingly, our new model underperformed
even for the outcome metrics (in- and out-degree centrality) successfully pre-
dicted by a similar approach in that paper. This discrepancy could be attributed
to the new metrics being weaker indicators of influence, suggesting they are less
directly tied to BEND maneuvers. Additionally, the inherent complexity and
variability introduced by these additional metrics might have diluted the predic-
tive power observed with the original set.

However, the most likely explanation is the inclusion of new data, indicating
that the BEND tendencies within these two separate populations were divergent
enough to weaken the predictor. This suggests that the patterns of influence
and behavior in the new data set differ significantly from those in the previous
data set, complicating the model’s ability to generalize effectively. Notably, the
strongest model was the multivariate model, which was not the case previously.
This indicates that there is value in the additional metrics, as they may capture
different measurements of influence not accounted for by the original metrics.
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Additionally, we examined the residuals to identify interesting behaviours.
Below are two plots for Change in Ego Closeness and Change in Ego-Net Density
(Unimodal), showing atypical behaviour in the below figures.

(a) Residuals for: Change in Ego Close-
ness

(b) Residuals for: Change in Ego-Net
Density (Unimodal)

Fig. 1: Residual analysis for selected metrics

In both plots, the multivariate model (red) shows tighter clustering around
the observed values compared to the univariate model (blue), indicating better
overall performance. However, there are notable outliers where the error magni-
tude is significantly higher. This suggests that certain data points are not well-
predicted by either model, highlighting areas where the model’s assumptions or
the data itself may need further refinement.

Most alarming is the clear linear shape to the residuals as the measured value
moves away from zero. This strongly indicates that our models have converged
toward an inappropriately linear solution, likely due to the preponderance of data
clustered around 0; while the "shape" of the model may be accurate at predicting
small change, it clearly breaks down the further the values move away from the
origin.

Given the findings, we suggest several steps for further research to enhance
the robustness and accuracy of our models. First, adding more data would pro-
vide more comprehensive insights and potentially improve predictive accuracy
by capturing a broader range of behaviours and patterns. Second, including tem-
poral features, such as t-n lag maneuvers for tweet t, can capture more complex
temporal dynamics. Third, dropping less relevant features, such as narrative
maneuvers (categories E and D in the BEND framework) could streamline the
model and reduce the overfitting tendency seen in some of our results. Lastly,
conducting a thorough analysis of outliers and considering their removal may
improve model performance, as indicated by the residual chart. In fact, the
residuals indicate a data transform may be necessary, implying that our selected
impact metrics are either insufficiently independent of the BEND maneuvers, or
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that our model as presented insufficiently deals with an inherently autocorrelated
phenomenon.

Despite these poor results, we remain optimistic that a predictive methodol-
ogy can be developed. By addressing these areas and refining our approach, we
plan to build on our current findings and develop a more robust framework for
predicting influence dynamics in social media networks. This ongoing research
is critical for effectively countering harmful narratives and supporting healthy
discourse on online platforms.
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