Modeling Protester Orchestration through Connective Action: A COVID-19 Lockdown Protest Case Study

Billy Spann, Oluwaseun Johnson, Esther Mead, Nitin Agarwal
University of Arkansas at Little Rock
{bxspann, oljohnson, elmead, nxagarwal}@ualr.edu

Abstract

A considerable amount of public discourse exists around the stay-at-home orders issued by government and health officials to stop the spread of the coronavirus. In this study, we explore COVID-19 anti-quarantine protests in Michigan, USA that resulted in the shutdown of the Michigan State Capitol. We examine theories of connective action by analyzing the online social media protests through Twitter that led to Operation Gridlock and the armed protests at the Michigan State Capitol. A qualitative and quantitative approach using social networking analysis was used to determine if certain groups were more involved in organizing these protests or if crowds appeared to self-mobilize. Social network analysis techniques were used to measure modularity, betweenness centrality, and degree centrality metrics in comparing loosely organized connective action networks vs more formal organization in a collective action. A content analysis of tweets was performed revealing the major topics and themes within each community. To determine which groups were at the center of information spread and possibly orchestrating the protests, focal structure analysis (FSA) was used. We also use Deviant Cyber Flash Mob (DCFM) measurements to assess the control, interest, and power of each user in the network. The results of integrating the DCFM and FSA models revealed the communities with the highest connective action properties and the top users within each community capable of orchestrating the protests.

Keywords

Collective Action, Connective Action, Social Network Analysis, COVID-19

Introduction

Digital media has disrupted and revolutionized citizen participation in political and social movements. Low costs, immediacy, decentralization, greater exposure, and reach all contribute to the way social media provides affordances for users to participate in these movements. Individual micro-actions, such as likes, mentions, and retweets, can contribute to collective action by making social information visible to personal networks, thereby creating circumstances for conditional cooperation. What is different from a collective action movement compared to a connective action movement is the absence of formally organized groups. Connective action networks tend to have more loosely based organizational properties of communities within a network. Social media enables these types of networks to organize and emerge quickly, but often lack the leadership and direction needed to ensure long-term policy change [10]. In this paper, we examine digitally enabled protests from a computational social science perspective to measure connective action within COVID-19 anti-quarantine protests in Michigan using social network analysis techniques.

In recent years, many robust quantitative approaches have been applied to analyze user metrics in complex social networks. The most common methods are centrality methods such as degree, betweenness, closeness, and eigenvector centrality methods at the individual level [11]. Also, methods such as modularity help to characterize the cohesiveness and community structure at the network or group level [11]. However, both traditional methods lack a method for identifying active hidden groups within a complex network as explained below [9]. Therefore, we propose an integrated model, considering the individual-level measure...
of the users’ betweenness centrality value, and the group-level measure utilizing the spectral modularity method employed to measure the groups’ influence in the entire network.

We further extend these techniques to consider the role of the network in connective action. In this analysis, we evaluate the temporally evolving communities participating in the social media COVID-19 anti-quarantine protests by measuring modularity over time. By performing entity resolution and a categorization of users, then graphing the communication network between these users, we can see a polarization of communities emerge over time. We hypothesize that as the protest hashtags gain more users, we will initially see modularity increase as users with different protest objectives or social interests join the protest. However, by examining the individual communities we expect to see more loosely based organizational groups become more tightly knit as modularity decreases. This could suggest that connective action groups are becoming more cohesive. The fundamental goals of this paper are to explore the following research questions:

RQ1: Explore the use of quantitative social network analysis methods to detect the network structure of collective or connective action groups in anti-quarantine protests related to COVID-19.

RQ2: After identifying polarization around this protest topic at the macro level, we hypothesize a method to infer connective action using modularity and centrality techniques.

**Literature Review**

The traditional collective action problem is a scenario in which there is conflict between the individual interest and the group interest. In the context of anti-quarantine protests, the conflict has multiple consequences to consider. Physical protesters individually risk catching COVID-19 and risk possible arrest by law enforcement. Successful protesters would like to collectively have the quarantine, or stay at home orders, lifted. The protests at the Michigan state Capitol involved protesters that went to the Capitol with firearms primarily to demand the quarantine orders be lifted. By showing up with firearms, this was meant as an expression of constitutional rights (for anti-quarantine) but also a display of second amendment rights.

Extensive quantitative research has been conducted within social media over the past several years, however research in the areas of digitally enabled collective action is relatively new. The field of computational social science has also grown tremendously. Online Social Networks (OSNs) afford users greater opportunities to participate in collective action. These platforms also provide a method to coordinate and influence behavior. The type of collective action coordinated using digital technologies is referred to as connective action. Connective action is a result of changes to the information environment that affect the way that citizens seek and find political information. OSNs impact the nature of the information that users receive and reduce the costs of interacting with each other. Digital technologies are not, however, the only property of connective action. The coordination must be either self-organized or lack formal organizational structure. In this study we assess the formation of these cyber collective communities and analyze interactions between actors and identify how they influence their communities.

The analytical model in this study embraces the theories of collective action [12] and collective identity formation [13]. In analyzing collective actions, social networks can be presented as networks of individuals. Social networks thus contribute significantly to individual participation. Personal friends, relatives, colleagues, and neighbors may all affect individual decisions to become involved in the act. Individuals may also be linked through indirect ties generated by their joint involvement in specific activities and/or events. Most studies in this area look at how the involvement in networks affects individual behavior. The overall structure of networks linking individuals is rarely assessed to evaluate the potential for collective action in a given collectivity, which is the very nature of the proposed research.

Al-khateeb and Agarwal [1] used the concepts of collective action and collective identity to model the factors of successful and unsuccessful deviant cyber flash mob (DCFM). This work proposed a conceptual framework for predicting outcomes of DCFMs that is primarily based on the calculation of the basic collective action concepts of power, control, utility, and interest. Al-khateeb et al. [2], [3] expanded upon their work to focus on the parameters of interest and control to develop a conceptual framework for predicting collective action in the form of cyber flash mobs. They subsequently applied their model to the social media activities of the terrorist group ISIL to illustrate the model’s real-world applicability [4]. Ahuja
et al. [5] examined the context of digital activism from the perspective of collective action concepts. Their work primarily focused on the concepts of affordance, network building, and synthesis. Alassad et al. [6] applied the DCFM model to the context of cyber-attacks on "smart city networks". With the addition of focal structure analysis (FSA), their work illustrated a model for how communities can be identified in online social networks (OSNs) based on the ability to identify "hidden influential sets of aggressors in the network." Alassad et al. [7] expanded upon their work based on the integration of the DCFM and FSA models to examine multiple datasets and to illustrate how the identification and removal of "malicious sets of coordinated users" can help to curb the spread of negative information on OSNs.

Data Collection and Research Methodology

To capture the COVID-19 protest data from Twitter, a Python script was used to collect a co-hashtag network using #MichiganProtest, #MiLeg, #Endthelockdown, and #LetMiPeopleGo hashtags over the time period of April 01, 2020 to May 20, 2020. During this timeframe state and local stay-at-home orders were issued due to the novel coronavirus Pandemic. The data collected resulted in a network of 16,383 Tweets, with 9,985 unique User Ids. Modularity of the network was calculated, and the nodes were clustered by community. The graph revealed 3,632 nodes with 382 communities. However, for this analysis we chose to focus on the top 5 communities, as these were the communities with the highest number of users, with the remaining communities quickly falling under a long-tail distribution. Subsequent Focal Structure Analysis (FSA) revealed a network of 273 users and 1,244 nodes with 55 Focal Structures. We also derived user-generated topics for each community through topic stream analysis using natural language processing (NLP). The twitter data corpus was used as input data and was manually cleaned with common stopwords being identified and removed. This remaining Twitter corpus was then used to train a Latent-Dirichlet Allocation (LDA) topic model to generate topic streams, which allowed us to highlight both shared social interests among communities and polarizing themes across each community as they emerged. Digitally enabled protests need to have three key features to form a successful collective action: they should have a collective identity, they should produce organization, and they should mobilize participants (either online or physically). The type of organization largely determines whether the movement is a collective action or connective action network. Next, we discuss the techniques used to measure these features and how our quantitative analysis addresses each of these key components.

Analysis and Results

We first analyzed users with traditional Social Network Analysis (SNA) methods, e.g., degree centrality and modularity. Users that show up as having high out-degree measures and as having a lot of interactions may not be identified as being influential using traditional methods of network analysis. We used a novel method to calculate power as used in deviant cyber flash mob (DCFM) detection and focal structure analysis (FSA) to find influential sets of small structures capable of spreading information throughout the network. The focal structures with high power may be hidden without this type of extended analysis. Additionally, we looked at in-degree and out-degree centrality measures. Those with high out-degree measures were communicating the most, and those with high in-degree measures received the most attention. Based on modularity, we identified several communities and key information brokers based on this analysis that showed close connections and ad-hoc coordination. These were primarily the discussion leaders in these communities and different sets of influential people that are found at the center of each cluster. The overall key finding was that Information Brokers/Influential users had the following features: high out-degree, high betweenness, and are members of focal structures with high power.

<table>
<thead>
<tr>
<th>Communities</th>
<th>Political Category</th>
<th>No. of Nodes</th>
<th>No. of Edges</th>
<th>Modularity</th>
<th>Avg. Weighted Degree</th>
<th>Avg. Betweenness Centrality</th>
<th>DCFM Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largest Community</td>
<td>Right</td>
<td>459</td>
<td>536</td>
<td>0.294</td>
<td>1.457</td>
<td>0</td>
<td>90.88</td>
</tr>
<tr>
<td>Second Community</td>
<td>Right</td>
<td>152</td>
<td>419</td>
<td>0.578</td>
<td>2.771</td>
<td>0</td>
<td>77.12</td>
</tr>
<tr>
<td>Third Community</td>
<td>Right</td>
<td>212</td>
<td>322</td>
<td>0.468</td>
<td>1.792</td>
<td>0</td>
<td>280.98</td>
</tr>
<tr>
<td>Fourth Community</td>
<td>Left</td>
<td>78</td>
<td>491</td>
<td>0.422</td>
<td>9.779</td>
<td>24.26</td>
<td>10.36</td>
</tr>
<tr>
<td>Fifth Community</td>
<td>Left</td>
<td>115</td>
<td>339</td>
<td>0.608</td>
<td>7.683</td>
<td>0.16</td>
<td>28.94</td>
</tr>
</tbody>
</table>
Collective Identity

One of the first features that define collective action is a shared collective identity. To measure collective identity, we first performed a manual content analysis on the tweets, then used an NLP-LDA model to perform a topic analysis for each community. Since the network was collected using a set of seed hashtags, we use this method as a proxy for collective awareness by the group. We infer that the group has a sense of shared social interests, and thus have formed a collective identity. We see a polarization of support emerge in the network graphs shown in Figure 3. Prominent conservative party views are seen in the top three communities and liberal party views primarily were seen in the fourth and fifth ranked communities. To further analyze the range of themes for the protesters, the top hashtags were extracted from the 16,383 tweets and ranked by frequency for each community. We then performed a manual content analysis to remove the highest cross-community hashtags, as these were generally the common seed hashtags, we originally collected in our initial Twitter search. After removing the cross-community hashtags and common stop words, we used the remaining Twitter corpus in an LDA model and generated the semantic themes showing in Table 2 below. We present these results as a method for measuring the collective identity of a collective or connective action group. In the next section we examine the organizational component of these groups.

Table 2. Collective Identity Themes for each of the Top 5 Topic based communities based on NLP-LDA

<table>
<thead>
<tr>
<th>Community</th>
<th>Manual Classification</th>
<th>Semantic Themes from Topic Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largest Community</td>
<td>Right, Anti-Gov Whitmer, Calls for Protests</td>
<td>a call to action to vote and recall whitmer; convince that the quarantine is excessive; focus on rights, such as freedom; pointing out the prison problem; and directing attention to @joshuaho (former UoM debate director)</td>
</tr>
<tr>
<td>Second Community</td>
<td>Primarily Far Right (includes QAnon); However, includes some Trump Resistance</td>
<td>the terms &quot;white&quot;, &quot;black&quot;, and &quot;whiteprivilege&quot; are also prevalent within this community. we also see a focus on bluelivesmatter, while also having a focus on &quot;facts&quot; and &quot;science&quot;. this community also seems interested in discussing &quot;testing&quot; and masks. rights related to guns are discussed, as well as issues relating to the &quot;economy&quot;, &quot;jobs&quot; and &quot;businesses&quot; and the need to be &quot;free&quot;. the &quot;nra&quot; and &quot;dnc&quot; are also discussed. &quot;breitbartnews&quot; is referred to, as well as the &quot;police&quot; and seatemajldr (a misspelled reference to senate majority leader mitch mcconnell)</td>
</tr>
<tr>
<td>Third Community</td>
<td>Far Right, Trump /Law Enforcement Support</td>
<td>a mixture of referring to &quot;terrorists&quot;, trump, the terms &quot;racist&quot; and &quot;morons&quot;; convincing that the quarantine is excessive. this community also seems to be a call to action to &quot;vote&quot;, focus on &quot;election&quot;, &quot;patriots&quot;, &quot;rally&quot; and &quot;openamericanow&quot;; this community also brings up &quot;black&quot; and &quot;white&quot; and &quot;whiteprivilege&quot;, and mentions high-profile figures such as trump, donaldtrumpjr, and ivankatrump. additionally, this community discusses the term &quot;veryfinepeople&quot;, which is a term that president trump used back in aug 2017 when discussing the charlottesville protest that resulted in the murder of heather hayer.</td>
</tr>
<tr>
<td>Fourth Community</td>
<td>Far Left - Calls for Release of Prisoners</td>
<td>major focus on high-profile figures such as heididwashington (MI dept of corrections director), @joshuaho (again), AFSCMICJProgram, chrisgautz (MI public information officer), and @ltgovgilchrist (MI lt gov); the prison topic is VERY dominant within this</td>
</tr>
</tbody>
</table>
Fifth Community | Far Left - Gov. Whitmer Support | focus on high-profile figures such as senmikeshirkey (senator, majority leader in MI senate), leechatfield (MI senator and speaker of MI house of reps), and senpolehanki (MI senator); a focus on rights, guns, unemployment, nursing and health care and a sense of emergency, republican lawmakers, and gongwer (a news service focusing on politics)

**Network Organization**

To measure the organizational component of the network, we examine how the information is spread between nodes and communities. If the organizational logic follows a pattern of diffusion and not mutual exchanges, the information flow should be rather one-directional than reciprocal [14]. We can measure the information flow in the communication network by calculating the degree centrality of the network structures, where we measure the in-degree and out-degree centrality for each node. Communities with a low degree of centrality suggest more asynchronous communication. The largest community detected in the Michigan protest data also has the lowest weighted average centrality, consistent with the tweets that were mostly tweeting to Governor Whitmer. Interestingly, Governor Whitmer, had zero out-degree linked, or zero tweets to others. It is important to note that orchestrating actors may not be actively coordinating the action but could be passively contributing to the overall organization of the issue. For example, many users may be posting @mention tweets to the Governor of Michigan, and even though she may not respond, protests could rally around this echo chamber of tweets. Within the top 5 communities, 3 have conservative party properties and 2 have liberal party properties. We also see there are more users in the top three communities than the fourth and fifth communities. There are multiple inferences that can be drawn from the data shown in Table 1 and 2. First, this suggests that the Michigan anti-quarantine protests were primarily driven by conservative party interests. This is consistent with the physical protest demonstrators that showed up at the Michigan State Capitol claiming the lockdown protest to be a 2nd amendment rally. We also see diverse polarization in topics and responses to each category around the protests. The conservative communities appear to have more densely connected communities than the liberal communities. We infer from this data that connective action from these communities are more cohesive and thus more successful in their protest efforts. Media reports validate that armed protesters physically protested at the capital resulting in a shutdown of the State Capitol.

Additional steps using social network analysis were taken to identify key features and key orchestrating connective action networks. Two novel methods were used to determine the organization and computational density of the network. The DCFM method was used to calculate powerful actors within the protest network, and the communication network was extracted from this dataset. Next, Focal Structure Analysis was performed to identify highly influential nodes with the ability to spread information through the network. The Deviant Cyber Flash Mob (DCFM) phenomenon can be considered a form of a cyber-collective action that is defined as an action aiming to improve a group’s conditions (such as, status or power). If we can identify those strong influential groups within a network that are organizing a DCFM, we can design counter measures to stop the aggressors from attacking networks, such as smart city’s cyber infrastructure. Previous work by Al-khateeb and Agarwal [1] developed a collective action based theoretical model which identified factors to predict success or failure of a DCFM.

<table>
<thead>
<tr>
<th>Control (C)</th>
<th>In-degree Centrality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest (I)</td>
<td>Number of retweets+mentions/Total number of tweets</td>
</tr>
<tr>
<td>Power(P)</td>
<td>Control C× Interest (I)</td>
</tr>
</tbody>
</table>
In their model, the identified factors are — Utility (U) (the benefits an individual gains if the DCFM succeeds or fails), Interest (I) (how much interest an user has based on the utility gained), Control (C) (how much control the aggressor has on the outcome of the DCFM), and Power (P) (how powerful an user is in the group). In this study, we calculate the structural characteristics of our sample DCFM network and assess the impact of these collective action measurements (i.e., I, C, and P) using our Focal Structure Analysis (FSA) model.

**Mobilization**

Connective action networks must display some level of collective action and citizen engagement and if they are to be successful. They often rely on resource mobilization theory by users sharing campaigns in local, national, and transnational arenas. A connective action network must also have the ability to draw in outside users. As such, our Michigan protest network represents a good case for assessing the use of digital technologies and different action frames (from personalized to collective) to engage and mobilize citizens, and to examine various related capacities and effects of those engagement efforts [8]. In our case study we analyze the mobilization effect by examining network modularity over time. We see that as the protest movement gains users (Fig.1), we also see the network begin to separate into homogenous communities (Fig.2) as they shared similar social constructs.

![Figure 1. Frequency of Tweets, cumulative protestors, and modularity over time](image)
Conclusions and Future Work

In this paper we performed a quantitative and exploratory analysis of the COVID-19 anti-quarantine or lockdown protests in the State of Michigan examining the impact of collective and connective action on the protest network. Social network analysis and topic modeling was used to computationally identify connective action groups within the protestor communication networks on Twitter. We identified several methods to support a future model to identify connective and collective action. We infer from connective action theory that groups that exhibit connective action may be leaderless and display self-organizing properties. High betweenness centrality suggests a more centralized organizational component, and low betweenness centrality is an indicator of more self-organizing networks. We also used modularity and topic modeling to identify polarization themes within the protestor communities. One of the conclusions we derive from this study is that the largest community has the lowest modularity and lowest average weighted degree. Therefore, none of the nodes have a structural advantage for disseminating protest information. The top 3 communities have zero betweenness, but communities 4 and 5 have higher centrality, suggesting a slightly more organizational component as indicated by the prisoner led organizations and members of the senate engaging in the protest conversations on twitter. Focal structure analysis also revealed that the top ranked communities did not contain any focal structures. Interestingly communities 4 and 5 were part of the most influential focal structure sets that also had the highest DCFM power. Since the top three communities did not have any members in the highest ranked focal structures, this also supports a connective action model of leaderless organization.

Acknowledgements

This research is funded in part by the U.S. National Science Foundation (OIA-1946391, OIA-1920920, IIS-1636933, ACI-1429160, and IIS-1110868), U.S. Office of Naval Research (N00014-10-1-0091, N00014-14-1-0489, N00014-15-P-1187, N00014-16-1-2016, N00014-16-1-2412, N00014-17-1-2675, N00014-17-1-
REFERENCES

Melucci, Alberto, Challenging Codes: Collective Action in the Information Age.