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Setting Priorities in Behavioral Interventions:
An Application to Reducing Phishing Risk

Casey Inez Canfield 1,∗ and Baruch Fischhoff1,2

Phishing risk is a growing area of concern for corporations, governments, and individu-
als. Given the evidence that users vary widely in their vulnerability to phishing attacks, we
demonstrate an approach for assessing the benefits and costs of interventions that target the
most vulnerable users. Our approach uses Monte Carlo simulation to (1) identify which users
were most vulnerable, in signal detection theory terms; (2) assess the proportion of system-
level risk attributable to the most vulnerable users; (3) estimate the monetary benefit and
cost of behavioral interventions targeting different vulnerability levels; and (4) evaluate the
sensitivity of these results to whether the attacks involve random or spear phishing. Using
parameter estimates from previous research, we find that the most vulnerable users were
less cautious and less able to distinguish between phishing and legitimate emails (positive re-
sponse bias and low sensitivity, in signal detection theory terms). They also accounted for a
large share of phishing risk for both random and spear phishing attacks. Under these condi-
tions, our analysis estimates much greater net benefit for behavioral interventions that target
these vulnerable users. Within the range of the model’s assumptions, there was generally net
benefit even for the least vulnerable users. However, the differences in the return on invest-
ment for interventions with users with different degrees of vulnerability indicate the impor-
tance of measuring that performance, and letting it guide interventions. This study suggests
that interventions to reduce response bias, rather than to increase sensitivity, have greater
net benefit.

KEY WORDS: Behavioral intervention; benefit–cost analysis; phishing; signal detection theory; system-
level risk

1. INTRODUCTION

Most cyberattacks begin with a phishing attack
via email, or increasingly, social media websites.(1,2)

Phishing attacks seek to gather information or trick
users into inadvertently installing malware that al-
lows hackers to access networks. Often, attackers
mass email employees, gathering information from
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out-of-office replies and bounce notices, along with
whatever information users are tricked into provid-
ing. This information can then be used to design
attacks, called spear phishing, that use personal in-
formation (e.g., known contacts, industry language,
and victims’ names) to design more realistic and per-
suasive messages. When successful, phishing attacks
may provide hackers with wide access to an orga-
nization’s network, with their success depending on
the organization’s internal security practices, the type
of account that has been accessed, and the hackers’
goal. At present, many firms are trying to reduce
phishing vulnerability, as evidenced by the market
for anti-phishing training and analytics (e.g., Wom-
bat Security(3) and PhishMe(4)).
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When employing such behavioral interventions,
organizations want to ensure that they are allocating
resources cost effectively. Users’ phishing suscepti-
bility can vary widely.(5) Here, we examine the im-
plications of that variation when evaluating the mon-
etary benefits and costs of behavioral interventions
that target subgroups varying in their phishing vul-
nerability. Our proposed approach considers (1) how
to identify poor detectors, (2) how to estimate their
contribution to overall system vulnerability, and (3)
how to assess the benefits and costs of interventions
targeting them.

1.1. Modeling Phishing Risk

Cybersecurity risk (R) is often defined as a func-
tion of threat (T), vulnerability (V), and impact (I).(6)

In this formulation, impact is the cost of a successful
attack, in terms of both direct costs (e.g., from a theft)
and indirect costs (e.g., from loss of reputation, pro-
ductivity, safety, etc.). The probability (P) of a suc-
cessful attack is a function of threat and vulnerability.
Threats include malicious attacks (e.g., phishing) and
errors (e.g., accidentially publishing private informa-
tion). Vulnerabilities are human, organizational, and
technical weaknesses that can be exploited by an
adversary.(7,8) These elements are related symboli-
cally by the following equations:

R = I∗ P,

P = F(T, V).

It is typically impossible to estimate the absolute
value of R. Most notably, the threat is unknown and
perhaps varying—in part, as a function of adver-
saries’ perceptions of the vulnerabilities and targets’
responses to them. Generally, an organization
cannot control threats, but must rely on legal and
political authorities for protection. It can, however,
try to reduce the impact of attacks (e.g., through
network segmentation or limiting permissions across
the network) or its vulnerability (e.g., through
behavioral interventions). Given the difficulty of
estimating absolute risk, interventions are best
analyzed in terms of their relative contribution to
reducing system risk, holding threat constant. Here,
we develop a model for such analyses and illustrate
it with measures of users’ performance taken from
behavioral experiments and measures of interven-
tion effectiveness taken from the research literature.
The model considers variation in both user perfor-
mance and intervention effectiveness. The following

section reviews the evidence on both forms of per-
formance (and variation), translating it into analytic
terms.

1.2. Accounting for Human Variation

Managing phishing risks is an example of what
human factors (or ergonomics) researchers call vigi-
lance tasks, ones in which individuals must monitor
their environment for a signal. Mackworth first stud-
ied vigilance in 1948 in order to determine the opti-
mal watch length for airborne radar operators, seek-
ing to maximize accuracy in submarine detection.(9)

Since then, vigilance research has identified task,
individual, and environmental variables that can af-
fect performance.(10) Task factors include base rate,
payoffs, and similarity of stimuli.(11) Studies typically
find that people are less likely to identify a signal
when there is a low base rate, the cost of missing a
signal is low, the cost of mistaking noise for a signal
is high, or there is little difference between the sig-
nal and noise (e.g., navigating a dimly lit room). In-
dividual factors include experience, personality, and
demographics. People may be less likely to identify a
signal correctly when they are less experienced, more
impulsive, older, or less intelligent.(10) Environmen-
tal factors that increase stress, such as uncomfortable
ambient conditions or greater workload, can reduce
performance.(10) The wide range of such shaping fac-
tors leads one to expect variation in performance
both within and between users. For example, even
highly trained users might occasionally be distracted
and fall for phishing attacks, especially when attacks
are rare and their workload high. The following sec-
tions review results regarding variation in suscepti-
bility to phishing attacks and response to behavioral
interventions.

1.2.1. Variation in Phishing Susceptibility

Following vigilance research, we conceptualize
human phishing vulnerability in signal detection
theory (SDT) terms, with performance measured as
sensitivity (dʹ) and response bias (c).(12) Sensitivity
refers to users’ ability to distinguish between signal
and noise, here, phishing and legitimate emails, re-
spectively. Greater sensitivity (as reflected in larger
values of dʹ) indicates greater discrimination ability.
Response bias refers to users’ tendency to treat an
email as phishing or legitimate when translating their
uncertain beliefs into actions. When response bias
(c) is 0, users show no bias. When response bias is
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negative, users are biased toward treating emails as
phishing; when response bias is positive, users are
biased toward treating emails as legitimate.

As with vigilance research, phishing detection
research has found that vulnerability (i.e., sensitiv-
ity and response bias) can be influenced by task,
individual, and environmental factors.(10,13,14) For
task factors, Canfield et al. found that users were
less sensitive and more cautious (i.e., had lower
sensitivity and response bias) when asked to choose
an action (e.g., click the link), rather than to charac-
terize an email as phishing or not, likely because the
perceived consequences (or payoffs) were higher for
actions.(15) In addition, users who perceived worse
consequences of phishing were more cautious (i.e.,
had lower response bias). Providing information
about the base rate of phishing emails in the test
set, however, had no effect on performance. Wolfe
and colleagues found sensitivity to base rates, in
the context of baggage screening, in studies that
manipulated the base rate (rather than just reporting
it to users).(16) Spear phishing could be construed
as reducing sensitivity by increasing the similarity of
phishing and legitimate emails.

For individual factors, Wright and Marett dis-
tinguish between experiential and dispositional var-
iables.(14) In terms of experience, users with more
computer knowledge tend to be less vulner-
able.(5,13,17,18) In terms of disposition, users who are
more impulsive, trusting, and risk seeking, tend to be
more susceptible.(5,17,19) Most phishing detection re-
search assesses susceptibility in terms of accuracy,
rather than in signal detection terms. Extrapolating
from vigilance research to phishing, trust is more
likely to influence response bias because it would in-
fluence users’ general inclination to view emails as
threatening. Trust would only influence sensitivity
if it led users to pay less attention to their emails,
hence not fully apply their detection skills.(20) These
individual factors can interact with demographic fac-
tors; for example, women tend to have less com-
puter knowledge and younger people tend to be less
risk averse, both of which may make them more
vulnerable.(17)

Environmental factors, such as workload and
time pressure, increase stress, which may increase
vulnerability. For example, users who receive many
emails and open new email as a habit, without much
conscious effort, are more vulnerable.(13,21) Similarly,
users who multitask while looking at their emails or
work under tight time deadlines, encouraging cursory
review of emails, might be more vulnerable.

At present, a common way for organizations to
evaluate phishing susceptibility is with “embedded
training”— sending fake phishing emails to employ-
ees, observing who clicks on the links, and (poten-
tially) providing remedial training.(22) An alternative
strategy is to use an independent measure of phishing
susceptibility to identify users needing extra training
or protection. Tests of computer security knowledge
or attitudes might guide such targeting.(23) Canfield
et al. have developed a test of phishing susceptibility
that system operators might employ.(15) It character-
izes vulnerability in terms of sensitivity and response
bias, thereby providing parameter estimates that
could be used in quantitative risk analyses. The next
section summarizes evidence regarding the effective-
ness of interventions that might be administered to
some (or all) of a system’s users based on their
performance.

1.2.2. Effectiveness of Anti-phishing Interventions

Vigilance researchers have long been interested
in improving the detection of low base rate phenom-
ena. Typically, these are high-consequence events
(e.g., diagnosing cancer, detecting an enemy subma-
rine, and avoiding phishing links), where the cost of
missing an event is high, but it is impossible to treat
every case as an impending disaster (because signals
are so infrequent). For example, one cannot respon-
sibly tell people that they have cancer based on weak
signals just to ensure that all cases are caught.(24)

Similarly, it is not realistic to treat a large portion
of emails as phishing, as that would interfere with
users’ primary work duties. Given how few emails
are phishing, such advice might, at some point, be
ignored.(25)

In vigilance research, most interventions focus
on task or individual factors. For example, in the
context of baggage screening for airport security,
Wolfe and colleagues found that exposing operators
to brief bursts of training at a high base rate with
full feedback reduced response bias, even after re-
turning to a real world with a low base rate and
limited feedback.(16) This result suggests that regu-
larly performing such training might encourage ob-
servers to maintain a low response bias despite the
low base rate.(20) With air-traffic control, Bisseret ob-
served that more experienced controllers had a lower
response bias than did new recruits, but did not differ
in sensitivity.(26) Such results suggest that experience
can reduce the perceived costs of false alarms and en-
courage reporting.
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Table I. Effectiveness of Interventions in the Literature, in Terms of Sensitivity (dʹ) and Response Bias (c)

Reference Intervention Task � d′ � c

Kumaraguru et al.(22) Educational materials Phishing detection 0.62 −0.54
Kumaraguru et al.(22) Embedded training (PhishGuru) Phishing detection 1.73 −0.52
Kumaraguru et al.(22) Game in lab (Antiphishing Phil) Phishing detection 1.09 0.00
Kumaraguru et al.(22) Game in field (Antiphishing Phil) Phishing detection 0.97 0.37
Ben-Asher and Gonzalez(28),a Expertise Network attacks 0.07 0.06
Wolfe et al.(16),a Burst of high base rate with feedback Baggage screening −0.49 −0.95
Bisseret(26),b Experience Air-traffic control 0.02 −0.18

Average Effect Size 0.57 −0.25

aReported hit and false alarm rates, converted to d′ and c.
bReported as β and converted to c where c = ln (β)/d′.
Note: See Stanislaw and Todorov for more details on the calculation of SDT parameters.(29)

For phishing detection, common behavioral in-
terventions include embedded training (feedback
on misses), warnings (about known risks), and
education (ranging from information to games).
Most studies have measured performance in terms
of accuracy (i.e., the number of successful attacks
in some period of observation). However, accuracy
conflates sensitivity and response bias. Accuracy can
be increased through better discrimination or more
cautious decision rules. In one of the few studies mea-
suring phishing detection performance in SDT terms,
Kumaraguru and colleagues found that embedded
training increased sensitivity and decreased response
bias.(22) Embedded training is similar to the inter-
vention tested by Wolfe and colleagues, but includes
feedback only on false negatives (i.e., cases where
phishing attacks are missed).(16)

Interventions that increase attention or effort
have sometimes been found to increase sensitiv-
ity. For example, Parsons and colleagues found that
telling users that they were being evaluated for their
phishing detection ability increased their sensitivity
without changing their response bias.(27) Wolfe and
colleagues observed an increase in sensitivity during
high base rate training trials.(20) However, unlike the
sustained change observed with response bias, sensi-
tivity returned to the previous value immediately af-
ter training ended. One possible explanation is that
screeners could not sustain the heightened level of at-
tention that they mustered during the training. This
result suggests that it may be better to focus on in-
terventions that influence response bias, rather than
sensitivity.

Table I and Fig. 1 summarize studies of be-
havioral interventions that reported results in SDT

terms. They were identified by using the joint search
terms of “signal detection theory” and “behavioral
intervention” in Google Scholar, which produced 76
papers. We identified an additional 65 papers by us-
ing the joint search terms “signal detection theory,”
“phishing,” and “experiment.” We then eliminated
papers that did not report empirical evidence of eval-
uating a behavioral intervention in SDT terms. That
left seven studies in four articles. We use these few
studies for their SDT parameter estimates, recog-
nizing that they constitute a fraction of the studies
evaluating behavioral interventions. The analysis
demonstrated here suggests the value of estimating
the effects of interventions in SDT terms.

Fig. 1 contrasts sensitivity and response bias for
these studies, before and after the intervention. In
this small sample of studies, the interventions were
more effective at improving sensitivity for phishing
detection (black circles), compared to the other
contexts (blue squares), while having similar effects
on response bias. For improving sensitivity, the
most effective intervention was embedded training.
For decreasing response bias, a burst of high base
rate training with feedback was most effective. Few
studies reported individual variation in intervention
effectiveness. However, given the heterogeneity
of baseline performance, it seems plausible that
interventions might not influence all users equally.
Our analysis allows for this possibility.

Although the vulnerability of a system is deter-
mined by its users’ sensitivity and response bias, sys-
tem operators may be concerned about the absolute
number of successful attacks. That rate will partially
determine the total cost to their system from attacks
and the appropriate investment in their reduction.
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Fig. 1. Average change in (a) sensitivity or dʹ
and (b) response bias or c for various behav-
ioral interventions.

Fig. 2. Number of successful phishing attacks out of 100 (denoted
by color) as a function of sensitivity (dʹ) and response bias (c).
Observations from Canfield et al. are plotted in black.(15) Risk is
high when sensitivity is low and users are biased toward clicking
on links in emails (positive response bias).

Here, we assess performance in terms of the num-
ber of successful phishing attacks (of each 100 at-
tempts). Fig. 2 shows performance for different val-
ues of sensitivity and response bias. When response
bias is negative and sensitivity is high, the risk is low
(blue, bottom-right corner). When response bias is
positive and sensitivity is low, the risk is high (red,
top-left corner). As seen in the figure, users can have
the same number of successful attacks with varying
SDT parameters. For example, a user with dʹ = 1.25
and c = 0.31 has the same number of successful at-
tacks as a user with dʹ = 0 and c = −0.32.

The black circles in Fig. 2 show the vulnera-
bility of individual participants in Canfield et al. as
determined by their sensitivity and response bias

values.3(15) The risk model in the next section as-
sesses the value of behavioral interventions for users
in a population with this distribution of vulnerability
levels (analogous to the color bands in Fig. 2). The
model defines benefits in terms of reduced vulner-
ability (i.e., a lower rate of successful attacks) and
costs in terms of those associated with any increase
in the rate of false alarms, thereby reducing users’
ability to do their jobs (and possibly reducing the
intervention’s effectiveness over time, as those costs
mount), and those associated with implementing be-
havioral interventions.

The model accommodates the natural variation
in phishing susceptibility and the fact that users can
have the same level of vulnerability for different rea-
sons (i.e., combinations of sensitivity and response
bias), as seen in Fig. 2. It also accommodates the fact
that interventions can have different effects on the
two SDT parameters, as seen in Table I. As a result,
interventions can have different effects on users with
the same vulnerability. We use a simulation to (1)
identify poor detectors, defined as the bottom 10%
of users; (2) determine the cumulative contribution
of those poor detectors to overall system vulnerabil-
ity; and (3) compare the benefit–cost of behavioral
interventions when focused on poor detectors or all
users. For the purposes of the present demonstration,
we defined “poor detectors” as the bottom 10% of
users. In its 2016 Data Breach Investigations Report,
Verizon reported that 13% of people tested clicked

3Canfield et al. estimated sensitivity and response bias for a de-
tection task, “Is this a phishing email?” (Yes/No), as well as a
behavior task, “What would you do if you received this email?”
(multiple choice).(15) We use the estimates of sensitivity and re-
sponse bias from the behavior task, which captures the actions
affecting system performance better than the detection task. The
data are publicly available at https://osf.io/7bx3n/.

https://osf.io/7bx3n/
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Fig. 3. Overview of risk model.

on a phishing attachment, suggesting a most vulner-
able population of about that size.(2) An interested
organization could apply the present approach with
estimates of these performance parameters for mem-
bers of its staff.

2. METHOD

The code for this analysis is publicly available at
https://osf.io/hkp9a/.

2.1. Overview of Risk Simulation

The present model simulates the effects of be-
havioral interventions on users’ phishing susceptibil-
ity for two different types of attacks: random (with
no special recognition of the target) and spear phish-
ing (with some personal information). As depicted in
Fig. 3, in each iteration of the model, we first gen-
erate a sample of individuals with varying vulnera-
bility, defined by sensitivity and response bias, with
values drawn from the distribution of empirical es-
timates reported by Canfield et al. (Step A).(15) We
then estimate each user’s initial (or baseline) perfor-
mance, in terms of the number of phishing emails that
he or she falls for (misses) and the number of legiti-
mate emails that the user mistakes for phishing (false
alarms) (Step B). For each user, we sample an in-
tervention from a normal distribution defined by the
mean and standard deviation of results from the liter-
ature review (in Table I), pooling phishing and non-
phishing interventions (Step C). That distribution is
used to reflect the variation in the effects of these
interventions on individual users (which is not rou-
tinely reported in studies). We then recalculate each
user’s sensitivity and response bias, incorporating the
intervention’s effects (Step D).

In Steps B and D, we estimate vulnerability sep-
arately for random and spear phishing attacks. The
ability to detect random phishing attacks is deter-
mined by users’ initial sensitivity and response bias,
plus the effects of any intervention. Because spear
phishing emails are designed to look like legitimate
emails, users have a lower sensitivity (dʹ). (Kaivanto
adopts a similar approach.(30)) The extent of that re-
duction in sensitivity depends on how well the spear
phishing email is crafted. As a placeholder for em-
pirical estimates, the model uses a difficulty factor,
f, ranging from 0, for a spear phishing attack that is
impossible to detect, to 1, for one that is no more dif-
ficult than a random phishing attack to detect. In the
simulations reported here, the value for f is sampled
from a uniform distribution over [0,1].

We assess performance on each simulated email
as a draw from a Bernoulli distribution with PM as
the probability of falling for a phishing email (false
negative) and PF A as the probability of mistaking a
legitimate email for phishing (false positive). This
procedure is repeated for each email, both phishing
and legitimate, that a user receives. In the simplest
scenario (i.e., no interventions or spear phishing
attacks), PM is a function of initial vulnerability
(sensitivity and response bias):

PM = 1 − �(0.5d′ − c),

where � represents a standard normal distribution
that converts a z-score to a probability.(12) In a
scenario with an intervention having estimated
impacts �d′ and �c, and a spear phishing difficulty
factor f, PM is:

PM = 1 − �{0.5[(d′ + �d′) f ] − (c + �c)}.
These variables are summarized in Table II,

along with the source of the parameter values used

https://osf.io/hkp9a/
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Table II. Model Inputs

Inputs Value Description

Difficulty factor f ∼ Uniform(0,1) For random phishing attacks, f = 1. For spear phishing attacks, f ranges
from 0, which eliminates dʹ, to 1, which preserves it.

Sensitivity d′ ∼ Normal(0.4, 0.5) Estimated from experimental data available at https://osf.io/7bx3n/.(13)

Response bias c ∼ Normal(−0.6, 0.65) Estimated from experimental data available at https://osf.io/7bx3n/.(13)

Effect on d′ �d′ ∼ Normal(0.57, 0.76) The mean and standard deviation are based on the literature review (see
Table I).

Effect on c �c ∼ Normal(−0.25, 0.45) The mean and standard deviation are based on the literature review (see
Table I).

in the simulation. We report users’ vulnerability (i.e.,
their probability of falling for a phishing attack,
PM) by decile to facilitate comparing low- and high-
performing users. Users in a low decile have a high
probability of falling for attacks, while users in a high
decile have a low probability (in effect, going down
and to the right in Fig. 2). We assume a 1% base rate,
so for every phishing email, there are 99 legitimate
emails. We estimate false alarms per user as PF A:

PF A = �{ − 0.5[d′ + �d′ ] − (c + �c)}.
We report performance (or phishing accuracy) in

terms of the rate of phishing emails that are missed.
High-performing users fall for many attacks, while
low-performing users fall for few. We make a dis-
tinction between expected vulnerability (estimated
probability based on sensitivity and response bias)
and observed performance (simulated as draws from
a Bernoulli distribution) in order to recognize that
observations may not perfectly reflect reality (as de-
fined by sensitivity and response bias).

We use a Monte Carlo simulation to incorporate
uncertainty by assigning a distribution to each pa-
rameter. The results represent the outcome of 1,000
iterations, each involving 100 phishing attacks against
100 users with a 1% base rate. We compare different
scenarios in terms of their benefit–cost, as described
in the following section.

2.2. Benefit–Cost Analysis

Benefit–cost analysis is a systematic, analytical
approach for assessing tradeoffs among options.(31)

Here, we estimate the difference between the bene-
fits and costs (net benefit) of anti-phishing interven-
tions. We include both the direct cost of the interven-
tion (e.g., usage fees, lost time, and productivity) and
indirect costs from changed behavior (e.g., increased
false alarms). We measure the impact of the inter-

vention as the change in the number of successful at-
tacks and false alarms. When that change is negative,
an intervention reduces successful attacks and false
alarms enough to provide net benefits.

The cost of successful attacks could be as low as
that of having to change a compromised password or
as high as a major data breach. The cost of a false
alarm could be as low as typing a URL into a browser
(rather than clicking on the link) or as high as a
lost business opportunity. We assume that probabili-
ties are not uniform across the range of possible im-
pacts, but that high-cost events are rare. Therefore,
we model the costs of attacks and false alarms with
a lognormal distribution, which has a long positive
tail, to accommodate those rare, high-cost events.
Table III summarizes these assumptions.

3. RESULTS AND DISCUSSION

The results are presented in three sections. Sec-
tion 3.1 compares observed performance and ex-
pected vulnerability. Section 3.2 assesses the cu-
mulative vulnerability by decile of individual users’
vulnerability. Section 3.3 examines the costs and ben-
efits of behavioral interventions for different deciles
of users.

3.1. Measurement of Vulnerability

This section compares observed performance to
expected phishing vulnerability, (PM), in order to
identify the characteristics of poor detectors. We de-
fine a distribution of users, characterized by their
relative proficiency as detectors (in deciles), as po-
tential targets of selective interventions. We use the
values of sensitivity and response bias observed by
Canfield et al.(15)

Fig. 4(a) shows the performance of users (in
terms of phishing accuracy, defined as the percent of

https://osf.io/7bx3n/
https://osf.io/7bx3n/
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Table III. Summary of Assumptions for Benefit–Cost Analysis

Cost Benefit Value Source

Attack Additional
successful attacks

Avoided attacks 1,800 ×
Lognormal(0,1)

Cyveillance(32)

False alarm Additional false
alarms

Avoided false
alarms

Lognormal(0,2)

Intervention Cost of
implementation;
lost productivity

N/A Uniform(1,10);
Uniform(10,100)

Ponemon Institute;(33) range accounts for
time spent on intervention (1–60
minutes), frequency (1–52 times/year),
and hourly wage for professionals
($20–50).

phishing emails avoided) at each vulnerability decile.
The means are monotonically related, by definition.
Their slope proves to be relatively linear for the
highest deciles (with the fewest successful attacks).
However, they spread out for the lowest deciles,
suggesting the potential value of targeting the poor-
est detectors. The measure of phishing accuracy in
Fig. 4(a) assumes a test with 100 phishing emails.
Figs. 4(b) and 4(c) show the deciles of vulnerability
as a function of the two SDT parameters separately.
As would be expected, users in the 10th decile have
relatively high sensitivity and negative response bias,
while users in the first decile have low sensitivity and
positive response bias. For each decile, the range
is wider for sensitivity than for response bias, as
reflected in a stronger correlation between PM and

response bias, r(98) = 0.91, p < 0.001, than with
sensitivity, r(98) = −0.38, p < 0.001. This suggests
that response bias is a more influential parameter
than sensitivity for interventions (across all users).
This result follows from the effect of response bias
being twice that of sensitivity in the equation for
vulnerability (PM).

3.2. Cumulative Vulnerability by Decile

Second, we assess vulnerability by decile, as a
basis for evaluating the potential benefit of targeting
poor detectors for behavioral interventions. Fig. 5(a)
translates the estimates of Fig. 4(a) into the percent-
age of successful attacks per decile. The black circles
show these estimates for random phishing attacks,

Fig. 4. Decile of probability of falling for an attack as a function of (a) performance (accuracy) for 100 phishing emails, (b) sensitivity [dʹ],
and (c) response bias [c].
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Fig. 5. (a) Percent and (b) count of successful attacks for 1 attack on 1,000 users, by vulnerability decile. The error bars are ± 2 standard
deviations.

where the bottom 10% of users account for 26%
of the total number of successful attacks. The blue
triangles are for spear phishing attacks, which reduce
sensitivity, with the bottom 10% of users accounting
for 24% of successful attacks. The two curves are
similar, despite the greater difficulty of distinguishing
spear phishing attacks, because of the relatively weak
relationship between sensitivity and vulnerability
(Fig. 4b). Fig. 5(b) shows the necessarily similar
pattern for the count of successful attacks. In
summary, poor detectors (bottom 10%) account
for a disproportionate share of the modeled or-
ganization’s overall vulnerability for both random
and spear phishing. This suggests that it may be
worthwhile to focus intervention resources on poor
detectors. That question is addressed in the next
section.

3.3. Benefit–Cost Analysis of Behavioral
Interventions

Third, we evaluate the benefit–cost of behav-
ioral interventions. The benefits of an intervention
are determined by the net reduction in the numbers
of successful attacks and legitimate emails mistaken
as phishing (false alarms). The costs of an interven-
tion include those associated with its implementation
(e.g., fees, lost productivity) and any additional suc-
cessful attacks and false alarms that it unintentionally
creates (e.g., by increasing trust in spam filters, which
do not completely protect users). We first report re-

sults from a Monte Carlo simulation varying the type
of attack, looking at the net benefit of an intervention
administered to users in each decile. We then report
a sensitivity analysis examining the influence of our
assumptions.

Fig. 6 shows the net benefit of interventions,
when applied to users in each decile, for random
and spear phishing attacks. Given the fixed costs
of the intervention (per user), the net benefits are
much greater for users in the lower deciles, who
contribute a disproportionate share of the system’s
vulnerability (Fig. 5). However, some benefit exists
even with the best detectors. For low-decile users, the
net benefit is somewhat greater for random attacks
because they are easier to detect, so interventions
have a larger effect. Because low-decile users fall for
more attacks overall, the difference is larger. For ran-
dom attacks, the mean net benefit is $580,000 (SD =
$220,000) for users in the first performance decile,
equal to 20% of the total net benefit of a systemwide
program. It is $56,000 (SD = $50,000) for users in
the 10th decile, or just 2% of the total net benefit.
For spear phishing attacks, the mean net benefit is
$440,000 (SD = $180,000) for users in the first perfor-
mance decile, or 18% of the total benefit. For users
in the 10th decile, the mean net benefit is $60,000
(SD = $48,000) or 2% of the total net benefit. Thus,
the net benefit is positive (above the dotted line in
Fig. 6), under most conditions for all users. The next
section performs sensitivity analyses, varying model
parameters.



Setting Priorities in Behavioral Interventions 835

Fig. 6. Benefit–cost by vulnerability decile,
where scenarios above the 0 line have positive
net benefit.

Table IV. Percent Change of Mean Benefit–Cost for Random Attacks from the Baseline Scenario (Reported for the 1st and 10th Deciles)

1st 10th 1st 10th

Parameter Baseline Worst B–C B–C Best B–C B–C

1. Mean d′ 0.4 0 −4% 43% 3 −46% −85%
2. Mean c −0.6 2 −97% 820% −2 −51% −98%
3. Effect on d′ 0.57 −1 −170% −290% 1 46% 64%
4. Effect on c −0.25 1 −170% −73% −1 92% −75%
5. Cost of Attack $3,000 $0 −99% −94% $200,000 6,500% 6,100%
6. Cost of FA $7 $0 −1% −9% $100,000 18,000% 100,000%
7. Cost of Intervention $60 $10,000 −16% −160% $10 −1% 0%

1st B–C $610,000
10th B–C $63,000

Note: Each parameter is varied independently, while the other parameters are held at the baseline value. Cases where the change in net
benefit is less than −100% (bolded) are where the benefit–cost crosses 0.

3.3.1. Sensitivity Analysis

Table IV shows the sensitivity of these estimates
to varying each model parameter independently, for
users in each decile, expressed as percent change
from baseline performance (without the interven-
tion). Each row represents a parameter that was var-
ied. The baseline assumptions are the mean inputs
from the Monte Carlo model. The worst and best sce-
nario assumptions are either the minimum or max-
imum inputs from the Monte Carlo model or other
values of interest, as noted in the text below. The first
column in Table IV provides the baseline assump-
tions, yielding a net benefit of $610,000 for the first
decile and $63,000 for the 10th decile. Because the
results are reported in terms of percent change of

net benefit from the baseline, it is less than −100%
(bolded in Table IV) where benefit–cost crosses 0.

Row 1 shows the effects of varying the mean sen-
sitivity of users across the nominal range of sensitiv-
ity (0–3). The baseline scenario used 0.4, the mean
sensitivity observed in the behavior task by Can-
field et al.(15) When the initial mean sensitivity of
users is very poor (dʹ = 0), high-decile users bene-
fit from an intervention more than low-decile users
because they can be more responsive (because they
already have some, rather than no, ability to detect
phishing emails). Even with the strongest of interven-
tions, low-decile users’ sensitivity still reflects weak
discrimination. When the initial mean sensitivity of
users is very high (dʹ = 3), interventions have limited
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net benefit for high-decile users, who are already able
to distinguish almost perfectly between phishing and
legitimate emails.

Row 2 varies the mean response bias (c) of users
across the nominal range of response bias (−2 to
2). The baseline scenario used −0.6, the mean re-
sponse bias observed in the behavior task by Can-
field et al.(15) For the worst-case value, where users
are not very cautious (c = 2), the benefits are much
greater for high-decile users. Low-decile users are so
incautious to begin with (at the baseline value) that
the intervention still leaves them falling for many at-
tacks. At the best-case value, where users are already
very cautious (c = −2), the intervention has little net
benefit for all users.

Rows 3 and 4 show the results of sensitivity anal-
yses varying the effectiveness of interventions. The
worst-case values were chosen to represent inter-
ventions that not only failed, but backfired, signifi-
cantly reducing sensitivity or increasing response bias
(�d′ = −1, �c = 1). They have net costs (rather than
benefits). The best-case values were chosen to rep-
resent very effective interventions, decreasing or in-
creasing sensitivity and response bias by 1. They lead
to increased net benefits. Interventions that increase
sensitivity (�d′ = 1) provide greater net benefit for
all users. Interventions that decrease response bias
(�c = −1) increase net benefit for low-decile users,
but decrease net benefit for high-decile users (due
to increased false alarms). Thus, interventions can
backfire if they reduce detection performance (by de-
creasing sensitivity or increasing response bias) or in-
crease false alarms (by decreasing response bias too
much for high-decile users).

The final three rows vary the financial costs of
successful attacks, false alarms, and interventions.
We assessed the worst- and best-case values used in
the Monte Carlo model. The one exception is for the
worst intervention cost: a $10,000 intervention was
not used in the Monte Carlo model, but represents
the minimum cost for the net benefit to be negative.
This is, of course, a very unrealistic cost and empha-
sizes the cost effectiveness of interventions. Very ex-
pensive attacks (e.g., costing $200,000/user affected)
and false alarms (e.g., costing $100,000 per email)
make any behavioral interventions extremely cost ef-
fective because interventions generally reduce suc-
cessful attacks and false alarms. However, such ex-
treme events may be so unusual that they are not
worth considering. If there is no cost of an attack,
then there is little net benefit, except from avoided
false alarms. If there is no cost of a false alarm,
then the net benefit does not change, meaning that

most of the estimated net benefit can be attributed
to avoided attacks. The cost of the intervention out-
weighs the benefits for high-decile users when it ap-
proaches $10,000 per person. These results are sum-
marized in Table IV.

4. CONCLUSION

We demonstrate an approach, using a Monte
Carlo simulation, to assess the value of implementing
anti-phishing behavioral interventions under a wide
range of scenarios. Our approach has three steps.
First, identify poor detectors, defined here as the
bottom 10% (or first decile). Second, assess system
vulnerability due to poor detectors. Last, perform
benefit–cost analyses, considering the sensitivity of
estimates to modeling assumptions. The results of
these analyses indicate the value of (re)allocating
resources to focus on poor detectors, rather than
trying to reduce the susceptibility of all users. Doing
that requires identifying those poor users. Canfield
et al. designed a test to do that, quantifying indi-
vidual performance in SDT terms suited to system
analysis.(15) Although there is evidence of construct
validity (specifically for the behavior task response
bias), attempts to use behavioral data to assess
predictive validity of this test were inconclusive.(34)

In the present demonstration of the approach, we
use estimates of individual performance from that
study, estimates of the effectiveness of behavioral
interventions from (the relatively few) studies for-
mulated in SDT terms, and estimates of benefits and
costs from the professional literature.

For the modeled situation, our analyses had
three primary findings.

First, poor detectors tend to have both low sen-
sitivity and high response bias (indicating that they
treat most emails as legitimate). Of the two param-
eters, response bias is much more closely related to
vulnerability, suggesting that interventions should fo-
cus on response bias. Under normal operating condi-
tions, without a large set of observations from em-
bedded training, it is difficult to tell whether users
who perform poorly are bad at detecting phishing
emails or are simply unlucky enough to have been
a victim in that sample of observations. The test by
Canfield et al. was designed to provide performance
estimates for situations where system operators
cannot collect appropriate data under normal oper-
ating conditions.(15)

Second, poor detectors create a disproportionate
share of the overall risk—by definition. The simu-
lation estimates just how great that share is. Under
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the model assumptions, it is quite large, suggesting
the potential value of targeting them for interven-
tions. The analyses find it to be similar for random
and spear phishing attacks, reflecting the finding that
sensitivity (which reflect the type of attack) is only
weakly related to vulnerability.

Third, the benefit–cost analysis shows the value
of focusing resources on the more susceptible users—
although there is some net benefit with almost all
users. Interventions may have a negative net bene-
fit if they increase false alarms (beyond the benefit of
avoided attacks) or inadvertently decrease sensitivity
or increase response bias. For example, a spam filter
might increase response bias if users believe that they
no longer need to watch out for phishing emails be-
cause the filter will catch them.

Once an organization has identified whom to
target, the present analyses indicate that it would
have greater net benefits from interventions to
reduce response bias than from interventions aimed
at increasing sensitivity. The relatively few studies
measuring performance in these terms suggests that
interventions focused on response bias have both
greater immediate impact and longer-lasting effects.
Embedded training appears to reduce response bias
by leading users to see phishing as more likely and
more consequential.(22) In addition, because it pro-
vides feedback only on misses (false negatives), users
only receive the intervention when their response
bias has shifted to be more positive and they are
tricked by the training email. In contrast, interven-
tions like AntiPhishing Phil, a game that teaches
users how to identify suspicious URLs, appears
primarily to affect sensitivity, hence may be less
effective, even with similar changes in accuracy.(22)

One limit to the model is that it omits some po-
tentially relevant costs of behavioral interventions,
such as employee opposition, thereby increasing its
estimates of net benefit. In a study of phishing us-
ing social connections, Jagatic and colleagues faced
strong criticism for using real names as senders of
fake phishing emails.(35) An organization could face
similar issues when attempting to train users to detect
attacks. Caputo and colleagues report that some of
their users felt ashamed about clicking on embedded
training.(36) Users may just be annoyed if the inter-
vention is time consuming or boring.(37) There may
also be benefits not in the model, such as increased
reporting of phishing emails.

A second limit to the model’s application is the
parameter estimates. Those for baseline behavior
were drawn from an experimental study, rather than

direct observation.(15) Those for the effectiveness of
interventions were drawn from a literature review
that yielded only a few studies with usable values.
Those for costs reflected assumptions about orga-
nizational conditions. Wider use of an SDT frame-
work in future research could help organizations
find parameter estimates better fitting their circumst-
ances.

A third limit, and topic for future research, is the
simple way in which we modeled spear phishing—
as a uniform distribution over possible reductions in
sensitivity. Vigilance research treats difficulty as a
function of similarity.(11) That is consistent with the
common attacker strategy of making phishing mes-
sages as similar to real ones as possible. Understand-
ing how recipients make those similarity judgments
would improve these estimates—and perhaps suggest
training options. Kaivanto modeled spear phishing in
terms of “match quality,” a binary factor indicating a
fixed reduction in sensitivity, rather than a variable
one, as modeled here.(30) In principle, spear phishing
messages might also influence response bias, for ex-
ample, by creating a sense of urgency or tapping into
human emotions, such as greed, potentially leading
users to lower their threshold for treating email as
legitimate.(13)

Although one might also attempt to predict per-
formance based on personal characteristics, such as
education, gender, or cognitive style, studies adopt-
ing this strategy have had limited success.(15) It seems
more promising to focus on understanding the situa-
tional determinants of performance, then use those
results to extrapolate from situations where behav-
ior has been studied to other situations of interest. In
that light, our results suggest that poor detectors may
benefit most from interventions designed to reduce
their response bias, whereas better detectors may
benefit most from interventions focused on spear
phishing, which undermines their otherwise greater
sensitivity. There is growing interest in the security
community in tailoring behavioral interventions.(23)

A model like ours can help to direct resources, once
performance differences are identified. That model
reflects the broader strategy motivating the present
research, translating behavioral research into terms
that allow risk analyses to evaluate the needs and op-
portunities for improving system performance.
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