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All science has uncertainty. Unless that uncertainty is communi-
cated effectively, decision makers may put too much or too little
faith in it. The information that needs to be communicated de-
pends on the decisions that people face. Are they (i) looking for
a signal (e.g., whether to evacuate before a hurricane), (ii) choos-
ing among fixed options (e.g., which medical treatment is best), or
(iii) learning to create options (e.g., how to regulate nanotechnol-
ogy)? We examine these three classes of decisions in terms of how
to characterize, assess, and convey the uncertainties relevant to
each. We then offer a protocol for summarizing the many possible
sources of uncertainty in standard terms, designed to impose
a minimal burden on scientists, while gradually educating those
whose decisions depend on their work. Its goals are better deci-
sions, better science, and better support for science.
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Decision making involves uncertainty. Some of that uncertainty
concerns facts: What will happen if we make a choice? Some

of that uncertainty concerns values: What do we want when we
cannot have everything?
Scientific research can reduce both kinds of uncertainty. Re-

search directed at clarifying facts can provide imperfect answers
to questions such as how well an oil pipeline will be maintained
and monitored, how long the recovery period will be after bar-
iatric surgery, and how much protection bicycle helmets afford.
Research directed at clarifying values can provide imperfect
answers to questions such as which charitable contributions give
donors the greatest satisfaction, what happens when people
commit to long-term goals, how much pleasure people can expect
from windfalls (e.g., lottery winnings) and how much pain from
misfortunes (e.g., severe accidents) (1, 2).
Taking full advantage of scientific research requires knowing

how much uncertainty surrounds it. Decision makers who place
too much confidence in science can face unexpected problems,
not realizing how wary they should have been. Decision makers
who place too little confidence in science can miss opportunities,
while wasting time and resources gathering information with no
practical value. As a result, conveying uncertainty is essential to
science communication.
Much of scientists’ own discourse is about uncertainty. Jour-

nals require authors to disclose the assumptions and ambiguities
underlying their work. Scientific debates focus on uncertainties
requiring attention. Peer review scrutinizes the uncertainty in
individual studies, protecting science from unwarranted faith in
flawed results. A healthy scientific community rewards members
who raise problems before their critics and penalizes those who
overstate results.
By revealing uncertainties, scientific discourse is an essential

resource for communications about them. However, it typically
provides both more and less detail than decision makers need
(3). At one extreme, scientists’ discourse can involve minutiae
that overwhelm even experts. At the other, it can omit vital uncer-
tainties that are common knowledge within a field, hence go without
saying, and uncertainties that a field routinely ignores, either be-
cause they appear unimportant or because its scientists have nothing
to say about them.
As a result, communicating scientific uncertainty requires both

simplifying and complicating normal scientific discourse. On the

one hand, the uncertainties that it addresses must be reduced to
their decision-relevant elements. On the other hand, the uncer-
tainties that scientists fail to mention must be uncovered. Which
uncertainties to subtract and add depends on the decisions that
the communications are meant to serve. Some decisions (e.g.,
whether to reexamine disaster plans) may be robust to any plau-
sible uncertainty (e.g., how storm surge estimates are revised).
Others (e.g., whether to buy monetized securities) may be highly
sensitive to details (e.g., the assumptions made about the liquidity
of capital markets).
Once communicators know what science is worth knowing,

they can study what facts decision makers know already and how
best to convey missing knowledge. As with all communication,
though, the first task is determining what to say. That will depend
on the decision, which might fall into one of three broad cate-
gories. (i) Decisions about action thresholds: Is it time to act?
(ii) Decisions with fixed options: Which is best? (iii) Decisions
about potential options: What is possible?
Communicating uncertainty for each class of decision requires

(i) characterizing uncertainty, by identifying the issues most re-
levant to the choice; (ii) assessing uncertainty, by summarizing
that information in a useful form; and (iii) conveying uncertainty,
by creating messages that afford decision makers the detail that
their choices warrant. After considering the scientific founda-
tions for addressing these tasks, we offer a protocol for eliciting
uncertainty from the scientists who know it best, in a standard
form designed to serve those who need to learn about it.
From this perspective, communications are effective when

they help people identify choices that serve their own, self-
defined best interests. In contrast to such nonpersuasive commu-
nications, persuasive messages are effective when they convince
people to behave in ways that someone else has chosen (e.g.,
public health officials, marketers, politicians). With persuasive
communications, shading or hiding uncertainty might be justified.
With nonpersuasive ones, honesty is the only policy.

Decisions About Action Thresholds: Is It Time to Act?
The simplest but sometimes most fateful communications inform
decisions to act, triggered by evidence passing a threshold for
action. Science may provide that trigger, in communications such
as those telling people to head for (or leave) storm shelters, start
(or stop) medical treatments, and sell (or buy) securities. How-
ever, setting a threshold for action inevitably poses value ques-
tions. Which tornado warning level best balances protection and
disruption? Which medical guideline embodies the best tradeoff
between the uncertain risk and benefits of a treatment? Which
portfolio rebalancing policy is best for a retirement plan? As
a result, communications must address the uncertainties sur-
rounding both scientists’ facts and decision makers’ values.
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Characterizing Uncertainty. People will judge science’s value by the
apparent wisdom of recommendations based on it. Do calls to
action seem to lead to saving lives, health, and profits or to
needlessly taking shelter, undergoing surgery, or selling valuable
securities? Those evaluations should depend on both the un-
certainty in the science and the appropriateness of the decision
rule translating it into a recommendation. In retrospect, such
evaluations can be colored by outcome bias, arising when deci-
sions are judged by their outcomes rather than by their wisdom
(4), and by hindsight bias, arising when people exaggerate how
well those outcomes could have been foreseen (5).
Even when decision makers resist such biases, they can judge

science fairly only if they can see its evidence through the filter of
the recommendations. If a call to action proves unnecessary, then
the science might have been highly uncertain, making mistakes
inevitable, or the science might have been strong but the threshold
overly cautious. Conversely, if a needed call to action was missed, it
could mean uncertain science or insufficient caution.
With a single event, decision makers cannot disentangle the

evidence and the decision rule on their own but must be told how
the advice was reached. That explanation might be, “We rec-
ommend this risky, painful surgery because we are confident that
it increases 5-y survival rates” or, “The evidence for a market
collapse is weak, but it is our fiduciary responsibility to issue a
‘sell’ call for retirement accounts.” With multiple events, though,
decision makers can infer the quality of the science and the
decision rule from the pattern of decisions and outcomes. As
formalized by signal detection theory, quality is represented by d′
(how well experts can discriminate among states of the world),
whereas decision rules are represented by β (the tradeoffs made
among possible outcomes) (6).
Fig. 1 illustrates the kind of research needed to estimate d′ and

β (7) from a study examining physicians’ decisions about whether
to transfer emergency room patients from regional hospitals to
medical centers. As with all empirical studies, it has heteroge-
neity in both parameters. Experts vary in their discrimination
ability and diagnoses vary in their difficulty. Experts vary in their
decision rules and cases pose different tradeoffs. Statistical anal-
yses are needed to estimate these parameters. Unless decision
makers receive such estimates, they must rely on their own in-
tuitive statistics for inferring the uncertainty of the science and
the caution of the decision rule.
If decision makers guess incorrectly about d′, then they may

place inappropriate confidence in the science, pay inappropriate
attention to new information, and hold inappropriate resources
in reserve. If they guess incorrectly about β, then they may take
undesired risks, follow advice unsuited to their needs, and feel
misled by the experts. Thus, although calls to action (or inaction)
can demonstrate science’s usefulness, they can also generate
distrust when those messages are misinterpreted or misaligned
with decision makers’ values. Communications increase the chance
of better outcomes when they make the uncertainties underlying
recommendations transparent. Doing so requires both analytical
research for assessing uncertainty and empirical research for
conveying it.

Assessing Uncertainty. The receiver operating curve is the stan-
dard summary of the uncertainty underlying categorical mes-
sages (e.g., whether to shelter from a storm or get a medical
treatment) (6). It shows the tradeoffs possible with a given ability
to discriminate states of the world. The greater that ability is, the
more favorable the decision options become. For example, as
medical imaging improves, a decision maker who tolerates a 5%
chance of missing a cancerous tumor will face less risk of ex-
ploratory surgery that finds nothing.
How precise estimates of d′ and β must be depends on the

decision. Sometimes decision makers need only a rough idea
of how much experts know and what values the decision rule
embodies. Sometimes they need greater precision. Estimation
is harder when they must infer both parameters, compared
with when they know one and must estimate the other. Experts

can eliminate uncertainty about values (β) by applying and
communicating explicit decision rules, leaving just uncertainty about
their knowledge (d′).
Estimating d′ or β means evaluating recommendations in the

light of subsequent events. Sometimes, those events can be ob-
served directly, for example, seeing how often floods (or tumors)
follow warnings and reassurances. Doing so requires defining the
events clearly (e.g., precisely what “tumor” means), lest perfor-
mance be judged too harshly or leniently (“we did not mean to
include benign tumors”). Sometimes, the evidence is indirect, as
when diseases are inferred from biomarkers or tornadoes from
damage patterns. The weaker the science supporting those infer-
ences, the greater the uncertainty is about what scientists knew
(d′) and valued (β). For example, (7) used American College
of Surgeons guidelines (8) to define the event “patient requires
transfer to a major medical center.” If those guidelines predict
medical outcomes, using them simplifies the analysis (compared
with evaluating cases individually). If not, then using them may
bias the analysis, perhaps even imposing a standard that some
physicians reject.
An alternative to observing experts’ beliefs and values is to

elicit them (9). Like survey research, expert elicitation must bal-
ance decision makers’ desire for precise answers with respondents’
ability to translate their knowledge into the requested terms. Re-
search into how people access their own beliefs can guide that
process (10). For example, rather than asking people why they
reached a conclusion, it is better to ask them to think aloud as they
make the inference, in order to avoid having the answers contami-
nated by their intuitive theories of mental processes.

Conveying Uncertainty. Effective communication requires clear,
mutually understood terms. One threat arises when scientists use
common words in uncommon ways. For example, probability-of-
precipitation forecasts can mislead people who do not know that
“precipitation” means at least 0.01 inches at the weather station
(11). Survey researchers have documented the difficulty of con-
veying what experts mean by such seemingly simple terms as
“room,” “safe sex,” and “unemployed” (12, 13). Clarity is an
empirical question, answered by user testing. When scientists’
favored term fails to communicate, a more familiar one may be
needed (e.g., using “given up trying to find a job” rather than
“out of the labor market”). After Hurricane Sandy, the National

Fig. 1. Signal detection theory in evaluating decisions to transfer ER patients.
Emergency physicians provided written recommendations for the next steps
in treating patients depicted in detailed profiles drawn from actual records.
Higher values for the decisional threshold indicate more cautious decisions
(β). Higher values for perceptual sensitivity indicate better discrimination
ability (d′). American College of Surgeons–Committee on Trauma (8) guidelines
were applied to the profiles to identify the appropriate decision. (Reproduced
with permission from ref. 7.)
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Oceanic and Atmospheric Administration concluded that it had
confused the public by downgrading the storm when it fell below
formal hurricane status, despite being more powerful than many
people could imagine (14).
Once the terms are clear, decision makers can consider d′ and β.

As mentioned, given multiple observations, decision makers can
estimate these parameters, subject to the biases afflicting such in-
tuitive statistics (e.g., flawed memory, illusory correlation, wishful
thinking, denial). Given a single observation, though, they must
rely on their beliefs about experts’ knowledge and values when
asking questions such as “Why is there so much apparent contro-
versy in that field?” and “How much do those experts know, or
care, about people like me, when giving advice?” (15, 16).
Serious miscommunication can arise when recipients do not

realize that categorical advice always reflects both parameters.
Physicians who fail to transfer seriously ill patients to medical
centers might be faulted for their decision rule (e.g., wanting to
keep the business at their facility) when the problem lies with their
judgment (e.g., overlooking critical symptoms). Observers may
overestimate the uncertainty of scientists whose professional norms
preclude giving simple answers to complex questions (e.g., “Is this
storm due to climate change?”). They may place unwarranted faith
in pundits who face no sanctions for going far beyond the evidence.
Observers familiar with the norms of science might misinterpret
scientists who abandon their customary caution for advocacy or
style themselves as public intellectuals (17).
As with all communications, the content of science-based

messages should depend on what recipients know already. At
times knowing the gist of β might allow inferring d′ (18). For
example, “FDA approved” (Food and Drug Administration)
means more to people who know that the agency’s β for ap-
proving a drug means “potentially suitable for some patients,”
implying a range of acceptable tradeoffs. At other times, decision
makers need more detail. For example, recommendations against
routine mammography screening for younger women evoked public
furor in 1997 and again in 2009 (19, 20). They might have fared
better had they communicated more clearly the d′ for mammog-
raphy (which has difficulty detecting treatable cancers in younger
women) and the parties whose welfare its β considered (patients?
physicians? insurers?) (21).

Decisions with Fixed Options: Which Is Best?
Categorical communications recommend choices. Other com-
munications merely seek to inform choices, allowing recipients to
apply their values by themselves. Information about scientific
uncertainty can serve that end, for example, by telling patients
how well new and old drugs are understood; by telling investors
how predictable bonds or stocks are, given their use in complex
financial products; or by telling climate change advocates what
surprises to expect from future research, with campaigns focused
on ocean acidification or sea-level rise.

Characterizing Uncertainty. Sensitivity analysis is the common for-
malism for assessing how much people need to know about how
much is known (22). It asks questions like, “Would any plausible
value for expected mean global temperature change affect your
preferred energy portfolio?” and “Would any prostate-specific
antigen test result affect your prostatectomy decision?” If the
answer is no, then that uncertainty is immaterial to the decision,
whatever the value of having reduced it that far.
If the answer is yes, then one can elicit experts’ judgments of

the uncertainties that matter to the decision. A standard repre-
sentation of uncertainty is a probability distribution over possible
parameter values (23). For example, Morgan and Keith elicited
the judgments of 16 climate experts for questions such as globally
averaged surface temperatures given a doubling of atmospheric
CO2 (24). For some decisions (and decision makers), knowing an
extreme fractile will suffice (e.g., “with even a 5% chance of a 3 °C
increase, I support an aggressive carbon tax”). For others, such as
investors in carbon permits, knowing the full probability distribu-
tion may have value.

Whether such probability distributions capture all useful un-
certainty has been a topic of lively academic debate (25–28).
Some decision theorists argue for the usefulness of higher-order
uncertainties (e.g., ranges of probability distributions) when
probabilities are not well known. Others contend that all beliefs
should be reducible to a single distribution. One practical
reason for assessing higher-order uncertainties is preparing de-
cision makers for surprises. For example, one of Morgan and
Keith’s climate experts gave two probability distributions (for
temperature with doubling of atmospheric CO2), depending on
whether the North Atlantic thermohaline circulation collapses.
That expert could not assign a probability to that event, thereby
allowing a weighted combination of the two conditional dis-
tributions, arguing that it was beyond current scientific knowl-
edge. On other questions, some experts predicted that scientific
uncertainty would increase over time, as research revealed un-
foreseen complications. Decision makers need to know when
uncertainty assessments include all factors or just factors that
scientists are comfortable considering.
A second practical reason for going beyond a single summary

distribution is identifying opportunities to reduce uncertainty.
Decision makers can then ask whether the benefits of that ad-
ditional information outweigh the direct costs of collecting it and
the opportunity costs of waiting for it. Those costs will depend on
the source of uncertainty. When it arises from sampling variation,
more observations (e.g., additional clinical trial patients) will pro-
vide greater precision, with readily calculated costs and benefits.
When uncertainty arises from poor measurement, calculating the
cost of reducing it might be straightforward (e.g., using a better
test) or difficult (e.g., developing a better test). When uncertainty
arises from unstudied issues, the costs and benefits of new knowl-
edge are matters for expert judgment. Whatever the case, decision
makers need to know how certain the science could be, as well as
how certain it currently is.

Assessing Uncertainty. Scientists routinely apply statistical meth-
ods to assess the variability in their data. Those calculations add
uncertainty to inferences about the data through the assumptions
that they make (e.g., normal distributions, independent errors).
Additional uncertainty arises from how the data are treated before
analysis. For example, political polls may include or delete in-
complete surveys or ones evoking negative answers to screening
questions (e.g., “Are you following the lieutenant governor’s
race closely enough to answer questions about it?”). Method-
ological research can inform assessments of such uncertainties
(29, 30). As elsewhere, their importance depends on the decision.
Issues that matter for tight elections may be irrelevant for blowouts.
Statistical methods can also summarize the variability in the

estimates produced by integrative models (e.g., simulations of
climate, pandemics, or national economies). The assumptions
that modelers make when creating and estimating their models
add uncertainty to that already found in the data that they use.
Scientific communities organized around models sometimes
convene consensus-seeking bodies to characterize those uncertain-
ties [e.g., the Intergovernmental Panel on Climate Change (IPCC),
the Federal Reserve Bank, the Particle Data Group]. Needless
misunderstandings may arise when they fail to communicate how
they handle uncertainty.
Morgan and Keith’s elicitation procedure (22) asked its

experts to integrate uncertainty from all sources (22, 29). To that
end, it included day-long elicitation sessions with individual
experts. Each session began with detailed instructions, discussion
of potential judgmental biases, and practice questions, familiarizing
participants with the process. Its questions were formulated pre-
cisely enough to allow evaluating the judgments in terms of their
consistency and accuracy. It used probes designed to help experts
assess and express the limits to their knowledge.
A complementary approach asks experts to audit existing

studies for their vulnerability to key sources of uncertainty. One
such procedure is the Cochrane Collaboration’s risk-of-bias assess-
ment for medical clinical trials (32). Fig. 2 adapts that procedure to
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assess the uncertainty in field trials of programs designed to reduce
residential electricity consumption. It shows that most trials had
a high risk of biases likely to overestimate the effectiveness and
underestimate the uncertainty of the programs being evaluated
(33). For example, without blinding, participants’ mere knowl-
edge that they are being studied may affect their behavior. Al-
though the possibility of such Hawthorne effects has long been
known (34), their size is uncertain. A recent experiment reduced
this uncertainty for electricity field trials, finding a 2.7% reduction
in consumption during a month in which residents received
weekly postcards saying that they were in a study. That Hawthorne
effect was as large as the changes attributed to actual programs
in reports on other trials (35).

Conveying Uncertainty.An audit like that in Fig. 2 creates a profile
of the uncertainties surrounding scientific results. Unless scien-
tists provide such summaries, observers must infer them. The
well-known heuristics-and-biases research program captures some
important patterns in such intuitive statistics (36, 37). Although
known for its demonstrations of bias, that research predicts that
performance will vary by task. The availability heuristic can pro-
duce good estimates when people receive and recall a repre-
sentative sample of examples (38). The anchoring-and-adjustment
heuristic can be useful when an informative value (or anchor)
is salient. However, when appearances are deceiving, the same
heuristics can produce unwittingly biased judgments, leaving
people confidently wrong.
Effective communication is especially important when un-

certainty arises from poor data quality (e.g., small samples, weak
measurement) (39). Even when people recognize those prob-
lems, they may be insufficiently sensitive, as seen in biases such
as the base-rate fallacy, belief in the law of small numbers, and
insufficiently regressive predictions (37). When uncertainties arise
from limits to the science, decision makers must rely on the
community of scientists to discover and share problems, so as
to preserve the commons of trust that it enjoys (40).
The precision in the summaries that scientists produce for one

another provides the foundation for communications that reduce
others’ need to rely on intuition. As mentioned, meteorologists’
precise probability-of-precipitation forecasts are readily under-
stood, once the meaning of “precipitation” is clear (41). It has
also been found that most people can extract needed in-
formation from drug facts boxes with numerical summaries of
risks and benefits and narrative summaries of threats to validity
(e.g., a clinical trial’s size, duration, and inclusion criteria).
With imprecise summaries, however, lay observers are left
guessing. For example, there is wide variation in how laypeople
interpret the expressions of uncertainty improvised by the IPCC,
in hopes of helping nonscientists (42).

Decisions About Potential Options: What Is Possible?
Some decision makers are neither waiting for a signal to deploy
a preselected option nor choosing from fixed options, but, rather,

trying to create ones. Such people need to understand the science
relevant to how their world works in order to devise ways to deal
with it. Uncertainty is part of what they need to know. Greater
uncertainty may prompt them to act sooner (to reduce it) or later
(hoping that things become more predictable). When they choose
to act, they may wish to create options with more certain out-
comes in order to know better what they will get, or less certain
ones in order to confuse rivals.

Characterizing Uncertainty. Fig. 3 reflects one way to organize the
science relevant to creating options, for decisions about drinking
water safety (43). In this influence diagram (Fig. 3), the nodes are
variables and the links are relationships (44–46); an arrow means
that knowing the value of the variable at its tail should influence
predictions of the variable at its head. Such models make predictions
by simulation. Each model run samples a value for each variable,
and then uses them to predict outcomes. The distribution of those
predictions is the computed uncertainty about the outcomes.
Although consumers in developed countries may give drinking

water safety little thought, they still must monitor their environment
for decision points (e.g., “Is my tap water brownish just because of
turbidity? “Should I take that ‘boil water’ notice seriously?”). When
such decisions arise, they must create and evaluate response options
(e.g., home testing, bottled water). Officials, too, must also create
and evaluate options both to remedy problems (e.g., stopping
contamination) and to inform consumers. Their confidence in
the science will help them to determine when and where to look
for better options.
Like scientific theories, models have uncertainties in both

their variables and their relationships. For example, predicted
storm surges at one location might be based on observations at
another point along a coast with varying microclimates and off-
shore geomorphology. Those predictions might reflect historical
relationships from periods with weaker storms and lower seas
(47). Additional uncertainty arises when models omit variables
or relationships, whether because they seem unimportant or
because the model’s formalisms cannot accommodate them. For
example, energy models often neglect social factors (e.g., how
quickly people adopt new technologies that they oppose). It takes
insight and humility to identify these uncertainties. It takes research
to assess their impact.

Assessing Uncertainty. Assessing uncertainty typically involves run-
ning a model with values sampled from probability distributions
over the possibilities and seeing how sensitive its predictions are to
those uncertainties. If the predicted outcomes are all unattractive,
then adding factors may allow for the creation of additional, and

Fig. 2. Methodological flaws in field trials of interventions for reducing
home electricity consumption. (Reproduced with permission from ref. 33.)
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better, options. For example, simulations using the model in Fig. 3
found that even the best communications could not reduce the
health effects of cryptosporidium contamination because the path-
ogen was so difficult to detect. However, better outcomes were
possible by expanding the model to include options for protecting
vulnerable populations (e.g., providing bottled water to people
with AIDS). Adding other factors could create options for de-
veloping countries with endemic cryptosporidiosis (48).
Just as modelers must assess the uncertainty created by omitting

factors from their models, so must scientists assess the uncertainty
created by factors that their science typically ignores or takes for
granted. Table 1 identifies four common properties of decision-
making experiments that could affect the performance observed
in them. Where everyday life has those properties, then the re-
search results could be robust. Otherwise, the research might
produce “orchids”—exotic, theoretically informative phenomena
that are rarely observed in the wild, hence an uncertain foun-
dation for predicting behavior there.
Any discipline could summarize its generic uncertainties. For

example, fields that use computational models could assess the
uncertainty created by omitting hard-to-quantify factors. Fields
that rely on qualitative analysis could assess the uncertainty
from such expert judgment. The Numeral Unit Spread Assessment
Pedigree (NUSAP) protocol offers a general approach, character-
ing any field by its pedigree, giving higher scores to ones that use
direct outcome measures, rather than surrogates; have experi-
mental evidence, rather than just statistical relationships; and use
widely accepted methods, rather than investigator-specific ones
(49, 50).
When research communities exclude relevant disciplines, un-

certainty may be seriously underestimated. For example, the
landmark Reactor Safety Study (51) assessed physical threats
to nuclear power plants but neglected human factors, such as
design flaws, lax regulatory regimes, unfriendly user inter-
faces, and punishing work schedules—all seen at Three Mile
Island, Chernobyl, Fukushima, Browns Ferry, and other inci-
dents. Conversely, aviation has reduced uncertainty by address-
ing human factor problems in instrument design (52) and cockpit
team dynamics (53). Decision makers need to know which fac-
tors a field neglects and what uncertainty that creates.

Conveying Uncertainty. To create options, people need to know
the science about how things work. A common formulation for
that knowledge is having a mental model of the domain (54–56).
Mental models have been studied for topics as diverse as logical
relationships, spatial patterns, mechanical systems, human physiol-
ogy, and risky technologies. The research typically contrasts lay
models with expert ones, such as the rules of syllogistic reason-
ing, schematics of biological system, maps, and analyses like Fig.
3. The contrast shows where people need help and which facts
go without saying. Lay beliefs can go astray in each element of
a model. People can misunderstand or ignore factors or rela-
tionships; they can know current science but not the uncertainty
surrounding it; and they can integrate the pieces poorly when the
processes are unintuitive (e.g., dynamic, nonlinear) or demand
too much mental computation.
Communications designed to improve mental models target

specific problems, in order to avoid overwhelming recipients by
saying too much or boring (and even insulting) them by repeating

things that they know already. Messages addressing specific uncer-
tainties include “Future storms are so hard to predict that you
should be ready for anything,” “Experience with these treat-
ments is so limited that you might wait until we know more,” and
“Today’s financial markets move too fast to rely on previously
successful trading strategies.”
When the processes are unintuitive, people may need explana-

tions, such as “if you’ve never experienced a rip tide, you can’t
imagine its power” (57) or “young women’s breast tissue is too
thick for mammography to be useful.” (58). If the processes re-
quire difficult mental arithmetic, then the communication may
need to “run the numbers” (e.g., showing how small risks accu-
mulate over repeated exposures) (59). If the kind of science is
unfamiliar, then science communication may require some sci-
ence education (e.g., how models work). If the discourse of sci-
ence is bewildering, then communications may need to explain
the role of controversy in revealing and resolving uncertainties,
and how passionate theoretical disagreements might have lim-
ited practical importance. If scientists tend to overstate their
results, then a warning may be needed. As elsewhere, the test of
success is empirical: Do people grasp the science well enough to
create and evaluate options (60)?

Eliciting Uncertainty
Science communication is driven by what audiences need to
know, not by what scientists want to say. Thus, it is unlike
communicating with students, who must accept curricular defi-
nitions of what matters. However, relevance poses challenges.
Mastering the uncertainties of many decisions forces laypeople
to become experts in everything. Addressing the needs of many
decision makers forces scientists to become experts in everyone.
One way to reduce that load is by adopting standard reporting

formats, which experts can learn to create and decision makers can
learn to use. Subjective probability distributions are one such for-
mat, with seemingly growing acceptance. Signal detection theory
could be another, were the research conducted to make its quan-
titative estimates (d′, β) as clear as its concepts (discrimination
ability, caution). Influence diagrams offer a representation with the
precision needed for analyzing a problem and a graphic format
for conveying its gist (18).
Table 2 offers a standard protocol for eliciting and reporting

expert assessments of scientific uncertainty. It is designed to require
little additional effort from scientists, by making explicit concerns
that are already on their minds, in terms that should be familiar.

Variability.All measurement has variability, arising from variations in
procedure (e.g., how long a thermometer is left in), phenomena (e.g.,
how body temperature changes diurnally), and measured individuals
(e.g., how much they run “hot” or “cold”). Scientists routinely esti-
mate variability. Routinely sharing those estimates should cost little,
while freeing decision makers from having to guess them. Numerical
estimates are needed because verbal quantifiers (e.g., “stable
measurement,” “widely varying”) communicate poorly to people
unfamiliar with scientists’ conventional usage of the terms (61–
63). The ±X% format used in survey research, and required by its
professional organizations (64), is one example.

Internal Validity. Scientists ask common questions when evaluat-
ing studies. The protocol reports their assessments for the uncertainties

Table 1. Four common properties of decision-making experiments and their potential effects on participants’ performance

i) The tasks are clearly described: can produce better decisions, if it removes the clutter of everyday life, or worse decisions, if it
removes vital context, such as the choices that other people are making.

ii) The tasks have low stakes: can produce better decisions, if it reduces stress, or worse decisions, if it reduces motivation.
iii) The tasks are approved by university ethics committees: can produce better decisions, if it reduces participants’ worry about

being deceived, or worse decisions, if it leads to artificiality.
iv) The tasks focus on researchers’ interests: can produce better decisions, if researchers seek decision makers’ secrets of success, or

worse decisions, if researchers are committed to documenting biases.
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that have been found to pose the greatest threats to the validity
of medical clinical trials (32, 65–67). Although expressed in terms
of experimental research, these threats have analogs in observa-
tional studies. For example, selection bias arises when individuals
are not randomly assigned to experimental groups. In obser-
vational studies, the equivalent is ignoring confounds (e.g.,
the effects of cohort differences on correlations between age
and behavior).

External Validity. Decision makers need to know how confidently
they can extrapolate results from the contexts that scientists have
studied to the ones that interest them. Sometimes scientists have
evidence that can limit the uncertainty (e.g., “although the study
involved women, gender differences are rare with such behaviors”).
Sometimes, they can say little (e.g., “no one has ever studied men”).
The protocol in Table 2 proposes reporting on four such threats.

Strength of Science. The protocol adopts the NUSAP framework
(49) for four aspects of a field’s pedigree. The best fields have

strong theoretical foundations supported by robust experimental
methods and converging results. The weakest ones have poorly
understood observational data. The weaker a field, the greater
its uncertainty.

Credible Intervals.Quantitative summaries of uncertainty take the
form, “I am XX% certain that the true value is between Y and
Z.” A credible interval is the same size as the confidence interval
when scientists consider only observed variability. It is wider
when scientists question those observations or the strength of the
underlying science. It is narrower when scientists have enough
confidence in the basic science to discount anomalous observa-
tions. It can be higher or lower if scientists perceive bias (e.g.,
clinical trials designed to get the maximum effect; climate change
estimates made conservatively).
Unless there are negligible threats to the internal validity,

external validity, and pedigree of scientific results, credible intervals
should differ in size from confidence intervals. Nonetheless,
many scientists are uncomfortable providing them. Table 3

Table 2. A protocol for summarizing scientific uncertainty, illustrated in the context of medical clinical trials

Step i Identify key outcomes for decision makers (e.g., stroke) and how to measure them (e.g., annual probability).
Step ii Summarize variability
Step iii Summarize internal validity
Selection bias Do the initial groups differ from randomly assigned ones?

Were the groups drawn from same population, over same time periods, and with the same inclusion and
exclusion criteria?

Attrition bias Do the final groups differ from the initial ones?
Did the groups differ as a result of which participants dropped out (e.g., because the treatment did not seem

to be working or their lives were too disorderly to continue) or were excluded from analyses (e.g., for
incomplete data or seemingly anomalous responses)?

Administration Was the study conducted as intended?
Were instructions followed in administering the treatment and analyzing the results?

Performance bias Does the manipulation have unintended effects?
Were participants affected by knowing that they were in the study (or in a study), perhaps trying to satisfy

researchers’ (real or perceived) expectations?
Step iv Summarize external validity
Population bias Do treatment groups differ from the general population?

Might they be relatively sensitive to positive effects or to unintended side effects?
Intervention bias Are treatments administered differently in different conditions?

Might they be applied less consistently, intensively, or obviously?
Control group bias Do untreated groups differ in other ways?

Might they receive more (or less) of other treatments with more (or less) supervision?
Scenario bias Do other conditions differ from those of the study?

Might other factors diminish (or enhance) the treatment’s effect? Might the world have changed?
Step v Summarize the strength of the basic science
Directness How well do a field’s measures capture key outcomes?

The strongest sciences measure outcomes directly rather than relying on proxy measures (e.g., biomarkers
that appear related to health states).

Empirical basis How strong are the best available estimates?
The strongest sciences base their theories on large, well-controlled experiments rather than on datasets

that are small or collected under variable conditions (e.g., dose–response relationships derived from
epidemiological data).

Methodological rigor How strong are the best methods?
The strongest sciences have methods with well-understood strengths and weaknesses, and extensive

experience in their application.
Validation How well are theoretical results confirmed?

The strongest sciences have foundations (theories, hypotheses, relationships) that are strongly confirmed by
evidence from multiple, independent sources.

Step vi Summarize uncertainty (e.g., 95% credible interval)
Statements of the form, “Considering the variability of the evidence (step ii) and my assessments of the internal

validity of the studies that collected it (step iii), their relevance to the decision-making domain (step iv), and the
strength of the underlying science (step v), I am 95% certain that the true value of the critical outcome (step i)
is between Y and Z.”

Steps iii and iv are based on CONSORT criteria for evaluating medical clinical trials (31, 62). Step v is based on the NUSAP criteria for evaluating the strength
of sciences (47) Ref. 9 summarizes research regarding step vi.
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lists four common reasons and potential responses (68). De-
cision makers who receive a full report (Table 2, steps i–v)
might be able to infer the credible interval that it implies.
Whether they can is an empirical question.

Conclusion
Communicating uncertainty requires identifying the facts rele-
vant to recipients’ decisions, characterizing the relevant uncer-
tainties, assessing their magnitude, drafting possible messages,
and evaluating their success. Performing these tasks demands
commitment from scientists and from their institutions. It also
demands resources for the direct costs of analysis, elicitation,
and message development, and for the opportunity costs of having
scientists spend time communicating uncertainty rather than re-
ducing it (through their research). Making this investment means
treating communication as part of scientists’ professional respon-
sibility and rewarding them for strengthening the public goodwill that
science needs (40).
This investment would be more attractive if it advanced sci-

ence, as well as making it more useful. A standard reporting
protocol might help do that. Although assessing uncertainty is at
the heart of all science, such protocols are not (67, 68). Indeed,
the Consolidated Standards of Reporting Trials (CONSORT)
scheme, reflected in Table 2 and Fig. 3, was a response to the
inconsistent reporting of medical clinical trials. The FDA has
adopted a standard format for summarizing the evidence and
uncertainties underlying its drug approval decisions (70). The

drug facts box uses a similar strategy (41). The open-data
movement’s reporting standards seek to record scientific un-
certainty and reduce the file-drawer problem, whereby scientists
report results that affirm their hypotheses while finding reasons to
discard inconsistent ones. Such practices add inestimable un-
certainty to published science by obscuring its capitalization on
chance (71–73).
For scientists, uncertainty obscures theoretical questions. For

people who rely on science, uncertainty obscures choices. Those
awaiting a signal for action need to know whether the evidence is
certain enough to pass the threshold defined by their decision
rule. Those choosing among fixed options need to know how far
to trust predictions of valued outcomes. Those creating options
need to know how well the processes shaping their outcomes
are understood.
Table 2 offers a protocol for summarizing those uncertainties.

For scientists, it should require little additional work, merely
asking them to report, in standard form, judgments that they
make already. For decision makers, it should make uncertainties
easier to grasp by putting them in a common format. For com-
municators, it should allow economies of scope in creating ways
to address recurrent issues. The result should be better science
and better decisions.
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