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Objective: We manipulate the presence, skill, and display
of artificial intelligence (AI) recommendations in a strategy
game to measure their effect on users’ performance.

Background: Many applications of AI require humans and
AI agents to make decisions collaboratively. Success depends on
how appropriately humans rely on the AI agent. We demon-
strate an evaluation method for a platform that uses neural
network agents of varying skill levels for the simple strategic
game of Connect Four.

Methods: We report results from a 2 × 3 between-
subjects factorial experiment that varies the format of AI
recommendations (categorical or probabilistic) and the AI
agent’s amount of training (low, medium, or high). On each
round of 10 games, participants proposed a move, saw the AI
agent’s recommendations, and then moved.

Results: Participants’ performance improved with a highly
skilled agent, but quickly plateaued, as they relied uncritically on
the agent. Participants relied too little on lower skilled agents.
The display format had no effect on users’ skill or choices.

Conclusions: The value of these AI agents depended on
their skill level and users’ ability to extract lessons from their
advice.

Application:Organizations employing AI decision support
systems must consider behavioral aspects of the human-agent
team. We demonstrate an approach to evaluating competing
designs and assessing their performance.

Keywords: artificial intelligence, advisory systems, decision
making under uncertainty, trust in AI, team performance

INTRODUCTION

Artificial intelligence (AI) technologies are being
used in an increasingly wide variety of tasks, per-
forming as well as humans on tasks as diverse as

navigating the London underground (Gibney, 2016),
engaging in conversational speech (Xiong et al.,
2017), and extracting information from natural lan-
guage (Narasimhan,Yala,&Barzilay, 2016).Manyof
these advances come from deep learning, which has
been used in scientific discovery (Gilmer et al., 2017;
Green et al., 2022), medical science (Rajkomar, Dean,
& Kohane, 2019), and strategic decision making
(Brown & Sandholm, 2017; Vinyals et al., 2019).
These breakthroughs have raised hopes that AI
technologies can support human decision making
in high-stakes environments, such as criminal
justice sentencing, employment and hiring, and
healthcare (Albert, 2019; Gifford, 2018; Rajkomar
et al., 2019). They have also raised concerns that
these technologies may do more harm than good
without appropriate human collaboration and su-
pervision (e.g., Buolamwini & Gebru, 2018;
Mitchell et al., 2019; Future of Life Institute,
2023). Humans have essential roles in supervis-
ing programs that work correctly most of the time,
but need human intervention when they fail
(Endsley, 2017). That role can be particularly
difficult with programs whose high reliability
induces an inappropriate sense of security
(Green 2021). Thus, the success of AI depends
on keeping humans appropriately in the loop
(Chiou & Lee, 2023; Endsley, 2017, DSB,
2016). Here, we demonstrate a general method
for evaluating such efforts.

How human operators interact with and trust
automation is a long-standing topic in human factors
research (Lee & See, 2004; Meyer & Lee, 2013;
Parasuraman, 2000; Parasuraman & Riley, 1997).
Recent applications with AI suggest that operators
often have difficulty evaluating and implementing
system advice, leading to suboptimal performance
(McNeese, Demir, Cooke, & Myers, 2018; Bartlett
&McCarley, 2017; Dzindolet et al., 2000). In some
cases, performance may be worse with an aid than
without (Alberdi, Povyakolo, Strigini, & Ayton,

Address correspondence to Richard E. Dunning, De-
partment of Engineering and Public Policy, Carnegie
Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213,
USA; e-mail: rdunning@andrew.cmu.edu

HUMAN FACTORS
Vol. 0, No. 0, nn n, pp. 1-14
DOI:10.1177/00187208231190459
Article reuse guidelines: sagepub.com/journals-permissions
Copyright © 2023, Human Factors and Ergonomics Society.

mailto:rdunning@andrew.cmu.edu
https://doi.org/10.1177/00187208231190459
https://us.sagepub.com/en-us/journals-permissions
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00187208231190459&domain=pdf&date_stamp=2023-08-08


2004). Unless users know when and how much to
trust an aid, they may use it too much, too little, or
inappropriately (Aoki, 2020; Gao and Waechter,
2017, Lee and See, 2004). In their seminal work,
Lee and See (2004) defined trust as “the attitude that
an agent will help achieve an individual’s goals in
a situation characterized by uncertainty and vul-
nerability.” Lee and See (2004) identified purpose,
process, and performance as critical to that trust.
Many other factors such as workload and training
have been found to affect human use of automation
and AI, but system reliability and performance have
the greatest overall impact (Hancock et al., 2011,
Kaplan et al., 2021).

One potential obstacle to achieving appropriate
trust with AI algorithms built on deep learning,
like AlphaZero, is that they are a black box
(Hassoun, 2003) with an opacity that makes it
difficult for users to create mental models of
system processes. Unable to explain their ratio-
nale, these algorithms depend on user trust built
through interaction. To improve team perfor-
mance, developers’ attempt to increase the
transparency of algorithms by providing additional
information about their internal workings, so that
user can develop more accurate mental models
(Bansal et al., 2019).

One potential resource for increasing trans-
parency is the probability of success for possible
actions that some algorithms calculate as part of
their computational framework (Silver et al.,
2018). Compared to a categorical best choice,
those probability distributions might provide
useful information for assessing trust. Studies
have found that humans value receiving nu-
merical probabilities and can often use them
effectively, when they are associated with well-
defined events (Erev & Cohen, 1990; Gaube
et al., 2021; Lipkus, 2007; Zhang et al., 2020).
Probabilities may have little value, though, if
a system has such great predictive value that
humans just defer to it or such little predictive
value that humans stop using it (Meyer, 2004;
Parasuraman & Riley, 1997; Wickens & Dixon,
2007). Probabilities may also have little value
when systems impose such great cognitive load
that users cannot attend to the probabilities
(Peters et al., 2006; Wickens, 2008) or where
they recommend infeasible actions (Bertuccelli
& Cummings, 2011).

We offer a general method for assessing how
successful people are at deciding when to rely on
AI-based advisors, illustrated with a realistic, en-
gaging task. The task provides human users with
repeated trials that allow learning about their own
abilities, the abilities of the AI aid, and the op-
portunities for human-aid team collaboration. Our
task is patterned after the two-alternative forced-
choice (2AFC) tasks often used with ‘yes/no’ in-
dependent stimuli (e.g., alarms, color discrimina-
tion, target detection) (e.g., Wiczorek & Meyer,
2019; Bartlett &McCarley, 2017), applying Signal
Detection Theory to those responses (Green &
Swets, 1966). We extend that paradigm to an n-
alternative forced-choice (nAFC) task in a strategy
game with advice from AI agents whose abilities
players must learn from observed performance.
The task is the gameConnect Four, chosen because
it is complex enough that anAI aid could be useful,
with an algorithm that can provide success prob-
abilities for future moves, but is simple enough not
to impose cognitive load that will keep users from
attending to the probabilities.

We examine two psychological processes key
to the success of AI systems: how much human
operators trust them and how much they learn
from them. We manipulated two potential de-
terminants of trust: (a) how skilled the system is,
as revealed in the course of play and (b) how it
expresses its recommendations, as a categorical
best move or a probability distribution over the
set of possible moves.

HUMAN SUBJECTS STUDY

The present research created and demonstrated
a platform for studying human-AI collaboration. It
used the simple strategic game Connect Four and
AI agents with varying skill levels. Connect Four
players alternately place yellow or red discs in one
of seven columns of a 6 × 7 grid, alternating with
another player. Players win by getting four straight
discs in a single row, column, or diagonal (Hasbro,
2009). The game is an adversarial, zero-sum, se-
quential, perfect information. It was first solved by
computer in 1988 by James Allen (Allen, 2010). It
was chosen because it is easy enough for someone
with no prior experience to learn to play during the
experiment, but hard enough that humans cannot
easily compute its solution.
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Because Connect Four belongs to the class of
deterministic games that reinforcement learning
methods can solve to any desired degree of
mastery (Schrittwieser et al., 2020), we were able
to create agents with different ability levels, by
varying the amount of model training. Our im-
plementation of AlphaZero was trained by An-
thony Young (2018) and adapted here for stimuli
modification, skill assessment, and data collection
(see supplemental material for more agent details).
As seen in Figure 1, these agents have 1 (low), 5
(mid), or 20 (high) cycles of neural network
training. In the same way, we created an opponent,
with 3 cycles of training, roughly equivalent to
human performance in pretest trials, and an oracle,
with 50 cycles, used to define the best possible
solution. Table 1 shows each agent, its cycles of
training, and its error compared to an optimal
Connect Four solver during development (Young,
2018). The skill level is the percentage of rounds
that each Agent agreed with the oracle during our
platform development (see Table 1). Our method
uses these measures to evaluate the agents, the
human, and the human-agent team (explained
below).

Participants played 10 games, with random
assignment to a control group or one of the six
conditions in a 2 × 3 between-subjects design, with
the factors of display (categorical, probabilistic)
and AI agent skill level (high, medium, low). The
control group received no AI recommendations
and simply played Connect Four 10 times. In each

round, players made a provisional move, saw the
agent’s recommendation, and thenmade a decision
to use their provisional move or switch to the
agent’s recommendation, producing the human-
agent team move. The design was extensively
pretested to reduce the chance that the interface
affected results (e.g., players ignoring the proba-
bility distribution because the display was hard to
understand) (Elliott et al., 2012).

Hypotheses

For ease of exposition, we formulated our
hypotheses in directional form, adopting the
perspective of a proponent of AI agents. We
hypothesized that:

H1: Human skill will be greater when
players receive a probability distribution
rather than a categorical recommendation.

H2: Human skill will improve over trials,
improvingmorewithmore skilledAI agents.

H3: Human skill will be greater with any
AI agent than with none (control group).

H4: Team skill will be greater than human
skill.

H5:When players and AI agents disagree,
players will more often defer to agents
with higher skill levels.

Wewere, a priori, agnostic about these hypotheses,
as there were plausible reasons favoring and op-
posing each. Regarding H1, humans may or may
not be able to use the additional probabilistic in-
formation, depending on how well they can in-
terpret its content and manage the additional

Figure 1. Example Connect Four board, with proba-
bility sliders below each column.

TABLE 1: Artificial Intelligence (AI) Agent
Characteristics

Agent Training Cycles Error Rate Skill

Low 1 16% 39%
Opponent 3 9% 59%
Mid 5 6% 69%
High 20 2% 81%
Oracle 50 <1% 100%
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cognitive load. Regarding H2, players may benefit
from any AI agent or only from agents with de-
monstrably superior ability. Regarding H3, players
may or may not be able to learn from observing the
agent and trying to extract usable lessons from the
algorithm, whose calculations reflect patterns that
humans cannot see. Regarding H4, humansmay or
may not mistakenly defer to an underperforming
agent. Regarding H5, humans may or may not be
able to evaluate the quality of agent advice well
enough to rely more on better agents, in these
complex tasks. This study was preregistered with
Open Science Foundation (https://osf.io/wzecx/?
view_only=ae2be15e074040c98b0ea998b0058b5e).

METHODS

Participants

We recruited 156 participants through Ama-
zon’s Mechanical Turk, using a link to a website
that hosted the experiment. Participants were paid
a base rate of Pennsylvania’s minimum wage
($7.50/hr) for completing the experiment, along
with a bonus that depended on their proportion of
games won (=$4.50 × proportion of wins). The
bonus was meant to provide an incentive to op-
timize the decision, rather than just complete it
quickly (Young, 1967). Participantswere randomly
assigned to one of the seven groups (six experi-
mental and one control), with approximately 20
participants in each treatment group (see Figure 3).

Stimuli

For each move, participants were shown the
current board state, as in Figure 2. Participants
had 1 to 7 columns into which chips could be
placed depending on whether columns were
already filled. Participants played the yellow
chips, while the AI opponent, which always
moved first, played red. The board states were
dynamic, based on game play.

Figure 2 shows the displays for participants
who received probabilistic (top) or categorical
(bottom) recommendations. Both displays used
the same calculation, with the categorical dis-
play indicating the column with the highest
probability.

Task

Before making each move, humans were
asked to evaluate the board and then make
a provisional move, which was compared to an
oracle to calculate human skill. They then
indicated the probability that each possible
move was the best, using vertical sliders or
typing a percentage for each column. Although
pretest players were able to use the probability
response interface, few players in the experi-
ment gave probabilities other than 100% for
more than a few plays. As a result, we did not
analyze the probability responses, as originally
planned. Participants with an AI agent then
received its recommendation (as a probability
distribution or categorical best move), which
was used to calculate agent skill. Participants
then made their final choice, which we used
to calculate team skill. In cases where the
provisional move and agent recommendation
disagreed, we recorded whether that player
switched to the agent’s recommendation and
whether that change was to a better or worse
move, as defined by the oracle. After the player
moved, the website updated the game board
and the opponent moved again. Game play
proceeded until one side won or the game
ended in a draw.

Measures

The following measures were computed for
each player, for each move in each game.

· Human Skill: The proportion of moves where the
human’s initial choice, before seeing the AI rec-
ommendation, matched the oracle’s (near-optimal)
choice.

· Agent Skill: The proportion of moves where the
AI agent’s recommendation matched the oracle’s
choice.

· Team Skill: The proportion of moves where the
team choice, made by the human after seeing the
AI agent’s recommendation, matched the oracle’s
choice.

The following measures were computed for
players with agents, for moves where the agent’s
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recommended move disagreed with the player’s
provisional move.

· Appropriate Acceptance: The proportion of instances
where the player switched to an agent’s recommen-
dation that agreed with the oracle.

· Appropriate Rejection: The proportion of instances
where the player did not switch to an agent’s
recommendation that disagreed with the oracle.

Design

Figure 3 depicts the 2 (recommendation
display) × 3 (agent skill) between-subjects
design, along with the control group. The
agent gave either a probability distribution,
for each possible move being best, or a cat-
egorical recommendation, of the move with
the highest probability. Participants in the AI
groups were randomly assigned to agents with
low, medium, or high skill. Before playing, par-
ticipants were introduced to the Connect Four
game and the interface. Participants played 10
games with a brief survey between games, fol-
lowed by a longer survey at the end of the study.

Procedure

The experiment lasted approximately 45 mi-
nutes, including consent, tutorial and instructions,
game play, and final surveys. All participants
completed their tasks remotely over the Internet,
using their preferred computer web browser. After
each game, participants were shown their number

of wins, losses, and draws. After the 10 games,
they were asked for demographic information,
thanked, and given a code to secure compensation
from Amazon Mechanical Turk.

This research was approved by the Institutional
Review Board at Carnegie Mellon University as
“Human-AI Interaction Experiment.” All proce-
dures were performed in accordance with NIH
Office for HumanResearch Protections regulations
and in compliance with relevant laws and in-
stitutional guidelines. Informed consent was ob-
tained from each participant.

Beta Regression

While general linear modals can be powerful
tools for data interpretation and analysis, three
main assumptions must hold the following: (1)
normally distributed residuals, (2) homoge-
neous residual variance, and (3) residuals in-
dependent of each other (Graybill, 1961; Seber,
1966; Sokal & Rohlf, 1969). Our skill measures
are double-bounded [0%, 100%], potentially
violating the normality assumption (Ferrari &
Cribari-Neto, 2004; Verkuilen & Smithson,
2012). Beta regression, developed by Kieschnick
and McCullough (2003) and Ferrari and Cribari-
Neto (2004), assumes that the dependent vari-
able has a beta distribution with respect to
linear predictors, making it appropriate for
double-bounded dependent measures, such as
rates, proportions, and percentages (Cribari-
Neto and Zeileis, 2010). Cribari-Neto and
Zeileis (2010) developed the most popular R

Figure 2. AI agent recommendation for the probability distribution display (top) and
the categorical display (bottom). In each display, the top row is the AI agent’s
recommendation. The bottom row is the human player’s probability distribution for
each possible move winning, made before receiving the AI agent’s recommendation.
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package betareq. More recently, Brooks et al.
(2017) developed the R package glmmTMB,
which allows for mixed-effects models, hence
is better suited to our experiment which has
multiple measures from each subject (Brooks et al.,
2017). To accommodate values at 0 and 1, we
adopted a transformation proposed by Smithson
andVerkuilen (2006); n�1(y(n-1) + 0.5), where n is
the sample size. We chose the logit link to connect
the modeled statistic with the regressors so that
both are unbounded (McCullah & Nelder, 1989).

RESULTS

On each move, in each game, human skill is
scored as 1, if the human’s highest probability, before
seeing the AI agent’s recommendation, matches that
of the oracle; or as 0, if the two do notmatch. TheAI
agent’s skill and subsequent team skill were scored
similarly. Agent skill varied by game, depending on
the human’s play (e.g., it was higher with weaker
human players). As a result, we treated it as a con-
tinuous variable, whose mean was expected to ap-
proximate that observed in the training (Table 1).
During preanalysis, 10 participants were removed
from the data for apparently noncompliant response
patterns. Some repetitively lost games with
minimal moves and minimal time; indicating
that they were attempting to complete the
experiment quickly; 1 apparently used an online

solver, with 9 games of identical extremely high
scores. Figure 1 shows the remaining 147 par-
ticipants by their assigned group. Because our
control group had no agent, we used a mixed
effects 2 × 3 factorial design for the treatment
conditions, which we compared separately to the
control (Marini, 2003). Our mixed effects analyses
accounted for varying subject intercepts and skill
change over game play. To compare the treatment
and control groups, we used a single factor with 7
levels (experimental groups). To determine sta-
tistical significance, we applied Chi-squared Wald
Type III tests and contrasted results using Tukey–
Kramer pairwise comparisons.

Human Skill Changes Through Game Play

Figure 4 shows human skill performance across
game play for the control group, with each point
representing the proportion of matches (to the
oracle’s play) for each player for that game. The skill
level of players in the control group, with no AI
recommender, did not increase or decrease signifi-
cantly, over the games (p = .324) (see Table A1).
The group’s mean skill across all games was 0.397
(SD = 0.067), which resulted in winning 12.8% of
the games.

Figure 5 shows human skill across game play
for the six treatment groups, with each point
representing the proportion of matches (to the
oracle) for each human for that game. There was

Figure 3. Experimental design. Subjects (n) were randomly assigned to experimental groups
to play 10 games (g = 10) with agents in their treatment conditions.
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a significant interaction between game play and
AI agent skill (Χ2(1, N = 122) = 12.004, p <
.001; details in Tables A2 and A2-1). However,
display type (categorical vs. probabilistic) had
no significant impact on human skill (p = .946)
nor any significant interaction with AI skill or
game play (p = .901, p = .807, respectively;
Table A2). Tukey Pairwise comparisons (Table
A2-5) found greater improvement in human skill
across games when players were paired with an
AI agent of middle or high skill level, compared
to pairing with a low skill agent (p < .001, p =
.005, Cohen’s d < .05, respectively). Players
paired with middle and high skill agents im-
proved at a similar rate (p = .840).

A mixed effects beta regression, treating the 7
experimental groups as levels in one experi-
mental group factor, found no overall difference
in mean human skill (see Table A3-2); however,
there was a significant interaction effect of ex-
perimental group and game (Χ2(6, N = 147) =
26.921, p < .001; see Table A3-1). The only
statistically significant differences were that
humans viewing the categorical display with
a high skill agent improved more than those in
the control group, with no display (t = �3.444,

p = .011, Cohen’s d = .05) and those with
a probabilistic display and a low skill agent
improved less than those with a categorical
display with a high skill agent (t = �3.602, p =
.006, Cohen’s d = .05) or a middle skill agent
(t = �3.074, p = .035). See Table A3-3 and
Supplementary Materials for additional detail.

Resolution of Human-Agent
Disagreement

Overall, the agent agreed with the oracle, while
the human did not, on 23.9% of plays (SD = 0.15).
In those cases, humans appropriately accepted the
agent’s recommendation 46.1% of the time (SD =
0.36). The human matched the oracle, but the
agent did not, on 11.1% of plays (SD = 0.11). In
those cases, humans appropriately rejected the
agent’s recommendation 59.8% of the time (SD =
0.38).

There was no difference between the two dis-
plays in the appropriate acceptance rate (p = .948)
nor any significant interaction between display and
agent skill level or game (Table A4). Subjects paired
with more reliable agents appropriately accepted
recommendations at a higher rate (t = �4.283, p <

Figure 4. Human skill scores for each player, as a function of game play, for the control group (with no
AI aid). Points are proportions correct for individual players of each game. Curves reflect Beta re-
gressions with 95% CI.
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.001, Cohen’s d = .52, Table A4-3) and acceptance
increased across game playwithmore skilled agents
(Table A4-4). With the probabilistic display, teams
with high skill agents increased their rate of ac-
ceptance compared to low skill teams (Table A4-5).
The supplemental material and Figure (S)M5 have
details. There was no difference between the two
displays in the appropriate rejection rate, nor any
interaction between display and agent skill level or
game (Table A5). Appropriate rejection was more
likely with less skilled agents (Χ2(1, N = 122) =
6.478, p = .011, Table A5-1); however, the rate did
not change with game play. The Supplemental
Material and Figure SM3 have details.

Team Skill

Figure 6 shows the performance of the
human-agent team, as reflected in team skill
scores for players’ final moves, made after
seeing the agent’s recommendations. Here, too,
the display made no difference; nor was there
an interaction between display and agent skill
level or game (Table A6). Pooling the display
groups, AI skill largely determined team skill

(Χ2(1, N = 122) = 18.871, p < .001, Tables A6
and A6-1). Teams with middle and high skill
agents had higher scores than teams with low
skill agents across all games (t = �6.406, p <
.001, Cohen’s d = .44, Table A6-3), and in-
creased over game play (Table A6-5). The team
outperformed the low skill agent on 60.4% of
plays (SD = 0.49), the middle skill agent on
3.2% (SD = 0.17), and the high skill agent on
only 0.24% (SD = 0.049). Team skill was
higher than human skill for 71.4% of plays with
the categorical display (SD = 0.46) and for
67.2% of plays (SD = 0.47) with the proba-
bilistic display. Figure (S)M7 compares the
treatment groups by agent and display.

Figure 7 compares human, agent, and team
skill across game play. Overall team skill was
significantly determined by experimental group
and the interaction of group and game play
(Χ2=(6, N = 147) = 20.555, p = .002; see Table
A7-1). Teams with high and middle skill agents
showed greater skill and skill improvement over
game play, compared to the control group, while
those with low skill agents did not (see Tables
A7-2 and A7-3).

Figure 5. Human skill as a function of game play, for low (top), mid (middle), and high (bottom) agent skill
levels and for categorical (left) and continuous (right) displays. Points are proportions correct for individual
players of each game. Curves reflect Beta regressions with 95% CI.
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Win Rates

The scores reported above describe the details
of human, agent, and team play. The ultimate,
aggregate performance measure is how many
games are won and lost. Control group humans
won 1.28 (SD = 1.54) games, on average. Teams
with high and middle skill agents won more
games that teams with low skill agents or control
humans (two sample t test, t = 3.124, p < .001,
Cohen’s D >1.0), which won games at the same
rate (t = 1.337, p = .091, Cohen’s D <0.3).
Display made no difference except that with low
skill agents, teams won more games with the
probabilistic display than with the categorical
display (t = 2.298, p = .011, Cohen’s D = 0.513).

DISCUSSION

The risks and benefits of adopting AI technology
in decision making will depend on how well hu-
mans understand the strengths and weaknesses of
AI aids, so that they afford them appropriate trust.
The present study demonstrated a platform for
studying human-AI team performance, using the

simple strategic game of Connect Four. It illustrated
the research platform with one possible advising
system, where the human proposed a move, re-
ceived an agent recommendation, and thenmade the
move. We compared two possible displays of agent
recommendations: probabilistic (distribution over
possible moves) and categorical (the best move, as
implied by that distribution). We also varied agent
skill, as a function of the number of training cycles
for the underlying deep reinforcement learning al-
gorithm. The opponent was always an algorithm
whose performance matched that of the average
human in pretests.

In terms of our hypotheses, we found that:

H1:Overall, participants performed similarly
with the two displays, seemingly unable to
use the additional information provided by
the probabilistic display. The few significant
display differences had no obvious pattern
and seem best attributed to chance.

H2: Over the course of play, human skill
improved slightly with the middle and
high skill AI agents. Human skill did not

Figure 6. Mean team skill, as a function of game play, for agent skill levels low (top), middle (middle), and high
(bottom) and for categorical (left) and continuous (right) displays. Points are proportions correct for teams of each
game. Curves reflect Beta regressions with 95% CI.
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improve for either the control group or
humans paired with low skill agents.

H3:Human skill was not better for players
when paired agents compared with the
control for most treatment groups. Players
who were paired with high skill agents and
received the categorical display had higher
human skill than control condition players.

H4: Team skill was greater than agent
skill for 60% of the games with the low
skill agent, but rarely exceeded that of
the middle or high skill agents. These
results might be promising for using
high skill AI systems, problematic for
less skilled ones.

H5: Over the course of play, human
players were increasingly able to reject
inappropriate recommendations from low
skill agents and accept appropriate rec-
ommendations from middle and high
skill agents. However, they still resolved

many disagreements inappropriately. They
tended to defer uncritically to more skilled
agents, while ignoring good advice from
low skilled agents, a pattern seen else-
where (Bartlett & McCarley, 2017; Lee &
See, 2004; Wiczorek & Meyer, 2019). As
a result, agent skill was a powerful pre-
dictor of team performance.

As mentioned, human skill was similar with
both displays in almost all analyses. The one
significant interaction found that, for the prob-
abilistic display, humans appropriately accepted
high skilled agent recommendations over game
play at a higher rate than with low agents. A
speculative account is that the probabilistic
display helped players to see the limits to low
skill agents’ advice, while strengthening faith in
the high skill agents. Overall, though, the cog-
nitive load of processing the probabilistic dis-
play may have counterbalanced the value of the
additional information that it provided (Endsley,
2017).

Figure 7. Human, agent, and team skill as a function of game play, for control (left), low (left-center), middle
(center-right), and high (right) skill agents and for categorical (left) and probabilistic (right) displays. Points are
proportions correct for subjects of each game. Curves reflect Beta regressions with 95% CI for human subjects
(dotted lines), agents (dashed lines), and teams (solid lines).
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The cognitive load of producing probabilities
presumably accounts for why participants rarely
provided responses other than 100%, for the
probability of their move being the best one
(Erev & Cohen, 1990). As a result, we did not
conduct planned analyses of the appropriateness
of participants’ confidence in their moves (cal-
ibration) and their ability to use the additional
information in the display to protect against
overconfidence (Dzindolet et al., 2002; Peters
et al., 2006).

Whether changes in performance like those
observed here would warrant investment in an AI
system would depend on the application. In some
settings, marginal improvements are highly valu-
able; in others, less so. The answer would also
depend on the AI system’s capital costs (acquisi-
tion, installation, upgrades), operating costs (training
time, fatigue), opportunity costs (competing in-
vestments of money and personnel), and system
costs (deskilling, habituation). Finally, it would
depend on how well human-agent conflicts are
identified and resolved. Our scoring treated all
games and moves as equally important. That will
not always be the case.

Although our system underwent extensive
user testing, there was little evidence of human
learning over the 10 rounds of play in the
control group, without a skilled AI aid. Players’
deferral to the high skill agent suggests that
they learned little about its strategies, other than
to trust them. Such learning is essential when
agents are imperfect, hence may need to be
overruled, or when agents are not available
(e.g., a computer malfunction takes an aid
offline or an attack disables AI functions in
a field of combat). Such learning is, of course,
essential when practice with an AI agent is
intended as training.

Limitations

The present results reflect the performance
of participants recruited through Amazon Me-
chanical Turk. They were paid relatively well for
the MTurk world, with an average hourly rate of
$12.10, structured to include a performance in-
centive. They also worked on a relatively en-
gaging task. Nonetheless, their performance and

sensitivity to task features (e.g., the display) may
have been less than that in real-world settings. In
future research, time-stamp data might provide
a useful predictor of cognitive effort, perfor-
mance, and sensitivity.

Although the task used here was a simple game,
it has some key properties of many AI decision
support systems. The human user faces an un-
familiar advisor, with unknown skill, and un-
explained recommendations. The human must
decide whether to trust the AI advisor’s recom-
mendations, both when they support and when
they contradict the human’s intuitive ones. In life,
users might have to wait for feedback, if they
receive it at all. In the present task environment,
where they received immediate feedback, partic-
ipants were able to learn something about how
much to trust their AI agent, but little about how to
proceed on their own. The opacity of the AI agent,
even with the probability display, did not allow
users to improve their play. Although our appli-
cation used a deep reinforcement learning aid, the
behavioral issues should be similar with other AI
decision aids. Those responsible for deploying
such systems must evaluate the short- and long-
term effects of introducing them. The present
study offers a testing protocol and metrics that
could guide those evaluations.

CONCLUSIONS

As organizations evaluate AI technologies in-
tended to aid decision making, they must consider
behavioral aspects of the human-agent team. Poli-
cies on the procurement, maintenance, and opera-
tional deployment of AI decision systems should
specify their requirements for howwell humans can
tell when to trust the AI agent, resolve disagree-
ments, and learn over time. We found that humans
had some imperfect ability to tell how much to trust
these AI agents and learn their skill level, in the
complex, deterministic environment of the task used
here. That ability improved with the middle and
high skill agents, but decreased with the low skill
agent—which itself decreased over the course of
play. Whether that pattern recurs with other tasks
and environments is an empirical question, as is
what can be done to improve human learning about
and from AI agents.
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KEY POINTS

· For a complex strategy task, AI recommendations
improved task performance with skilled AI agents,
but not with unskilled ones.

· Human players appeared to follow the recom-
mendations of highly skilled AI agents uncritically.

· Human players did not benefit from the additional
information in AI agent recommendations ex-
pressed as a probability distribution over possible
options, rather than as a best-guess categorical
recommendation.
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