Searching for Convolutions and a More Ambitious NAS

Nicholas Roberts,*! Mikhail Khodak,*' Tri Dao,” Liam Li,’
Maria-Florina Balcan,' Christopher Ré,> Ameet Talwalkar'-
!Carnegie Mellon University
2Stanford University
3Determined Al
*denotes equal contribution

ncrobert@cs.cmu.edu,

Abstract

An important goal of neural architecture search (NAS) is to
automate-away the design of neural networks on new tasks
in under-explored domains, thus helping to democratize ma-
chine learning. However, current NAS research largely fo-
cuses on search spaces consisting of existing operations—
such as different types of convolution—that are already
known to work well on well-studied problems—often in com-
puter vision. Our work is motivated by the following ques-
tion: can we enable users to build their own search spaces
and discover the right neural operations given data from their
specific domain? We make progress towards this broader vi-
sion for NAS by introducing a space of operations general-
izing the convolution that enables search over a large family
of parameterizable linear-time matrix-vector functions. Our
flexible construction allows users to design their own search
spaces adapted to the nature and shape of their data, to warm-
start search methods using convolutions when they are known
to perform well, or to discover new operations from scratch
when they do not. We evaluate our approach on several novel
search spaces over vision and text data, on all of which sim-
ple NAS search algorithms can find operations that perform
better than baseline layers.

1 Introduction

Neural architecture search is often motivated by the Au-
toML vision of democratizing ML by reducing the need for
expert deep net design, both on existing problems and in
new domains. However, while NAS research has seen rapid
growth with developments such as weight-sharing (Pham
et al. 2018) and “NAS-benches” (Ying et al. 2019; Zela,
Siems, and Hutter 2020), most efforts focus on search spaces
that glue together established primitives for well-studied
tasks like vision and text (Liu, Simonyan, and Yang 2019;
Li and Talwalkar 2019; Xu et al. 2020; Li et al. 2020)
or on deployment-time issues such as latency (Cai et al.
2020). Application studies have followed suit (Nekrasov et
al. 2019; Wang et al. 2020).

In this work, we revisit a broader vision for NAS, propos-
ing to move towards much more general search spaces while
still exploiting successful components of leading network

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

khodak@cmu.edu

topologies and efficient NAS methods. We introduce search
spaces built using the Chrysalis,' a rich family of param-
eterizable operations that we develop using a characteri-
zation of efficient matrix transforms by Dao et al. (2020)
and which contain convolutions and many other simple lin-
ear operations. When combined with a backbone architec-
ture, the Chrysalis induces general NAS search spaces for
discovering the right operation for a given type of data.
For example, when inducing a novel search space from the
LeNet architecture (LeCun et al. 1999), we show that ran-
domly initialized gradient-based NAS methods applied to
CIFAR-10 discover operations in the Chrysalis that outper-
form convolutions—the “right” operation for vision—by 1%
on both CIFAR-10 and CIFAR-100. Our contributions, sum-
marized below, take critical steps towards a broader NAS
that enables the discovery of good design patterns with lim-
ited human specification from data in under-explored do-
mains:

e We define the broad NAS problem and discuss how it in-
teracts with modern techniques such as continuous relax-
ation, weight-sharing, and bilevel optimization. This dis-
cussion sets up our new approach for search space design
and our associated evaluations of whether leading NAS
methods, applied to our proposed search spaces, can find
good parameterizable operations.

e We introduce Kaleidoscope-operations (K-operations),
parameterizable operations comprising the Chrysalis that
generalize the convolution while preserving key desir-
able properties: short description length, linearity, and
fast computation. Notably, K-operations can be combined
with fixed architectures to induce rich search spaces in
which architectural parameters are decoupled from model
weights, the former to be searched via NAS methods.

e We evaluate the Chrysalis on text and image settings
where convolutions are known to work well. For images,
we construct the ButterfLeNet search space by combin-
ing K-operations with the well-known LeNet (LeCun et
al. 1999). For text classification, we generalize the sim-
ple multi-width model of Kim (2014). On both we evalu-

"Following Dao et al. (2020), butterfly-based naming will be
used throughout.

ate several applicable NAS methods and find that single-
level supernet SGD is able to find operations that come
close to or match the performance of convolutions when
searched from-scratch, while also improving upon them
when warm-started.

e We conclude by examining the generality of our approach
on domains where convolutions are the “wrong” opera-
tion. We first consider permuted image data, where the
“right” operation is permutation followed by convolu-
tion, and observe that NAS methods applied to the But-
terfLeNet search space yield an architecture that out-
performs all fixed operation baselines by 8%. Next we
consider spherical MNIST data of Cohen et al. (2018),
where the “right” operation is the spherical convolution
from the same paper. We consider the K-operation search
space that generalizes their network and again find that
it outperforms convolutions by more than 20%. Our re-
sults highlight the capacity of K-operation-based search
spaces, coupled with standard NAS methods, to broaden
the scope of NAS to discovering neural primitives in new
data domains.

Related Work

AutoML is a well-studied area, with most work focusing
on the fairly small search spaces of hyperparameter op-
timization (Bergstra and Bengio 2012; Li et al. 2018) or
on NAS (Elsken et al. 2019). In the latter case, it has
been observed that the search spaces are still “easy” in
the sense that random architectures can do reasonably well
(Elsken et al. 2019; Li and Talwalkar 2019). More recently,
Real et al. (2020) demonstrated the possibility of evolving
all aspects of ML—not just the model but also the train-
ing algorithm—from scratch. We seek to establish a mid-
dle ground in which search spaces are large and domain-
agnostic but still allow the encoding of desirable constraints
and the application of well-tested learning algorithms such
as stochastic gradient descent (SGD).

Our main contribution is a family of search spaces that
build upon K-operations, which generalize parameterized
convolutions (LeCun et al. 1999). Most NAS search spaces
only allow a categorical choice between a few kinds of
convolutions (Liu, Simonyan, and Yang 2019; Zela, Siems,
and Hutter 2020; Dong and Yang 2020); even when dras-
tically expanded to include many types of filter sizes and
other hyperparameters (Mei et al. 2020), the operation it-
self is not generalized and so these search spaces may not
be useful outside of domains where convolutions are ap-
plicable. Beyond NAS, recent work by Zhou, Knowles,
and Finn (2020) uses a meta-learning framing (Thrun and
Pratt 1998) to study how to learn more general types of
symmetries—beyond simply translational—from multi-task
data. This transfer-based setup allows a clear formalization
of learning such equivariances, though unlike NAS, it is not
applicable to single-task settings. In addition, their technical
approach does not generalize two-dimensional convolutions
due to computational intractabality, while our K-operations
are indeed able to do so.

The above works search over spaces of parameterizable
operations by delineating a set of architectural or meta pa-

rameters to define the space over operations that are sep-
arate from model weights, which parameterize the opera-
tions found. In contrast, other efforts seek to simply out-
perform convolutions by directly training more expressive
models. This includes several that use linear maps based on
butterfly factors as drop-in replacements for linear or con-
volutional layers (Dao et al. 2019; 2020; Alizadeh vahid et
al. 2020; Ailon, Leibovich, and Nair 2020). Very recently,
Neyshabur (2020) showed that a sparsity-inducing optimiza-
tion routine can train fully connected nets that match the per-
formance of convolutional networks and in the process the
weights learn local connectivity patterns. However, none of
these papers return parameterizable operations from a for-
mally defined search space.

2 Statistical and Optimization Objectives of
NAS

In this section we set up the statistical and algorithmic ob-
jectives of neural architecture search. This is critical since
we seek a definition of NAS that encompasses not only cate-
gorical decisions but also learning primitives such as convo-
Iutions. We ignore latency and transfer considerations and
instead focus on the statistical problem of learning to pa-
rameterize a function f,, , : Z — R so as to minimize its
expected value E, fo, ,(z) w.r.t. some unknown distribution
over the data-domain Z. Here a € A are architectures in
some search space A and w € W are model-weights of suf-
ficient dimensionality to parameterize any architecture in A.
Classically, a is chosen by a human expert to aid the data-
driven selection of w € W, i.e. to have favorable statistical
and optimization properties to ensure that, given a finite data
set S c Z, some learning algorithm Alg : 2% x A — W
will return w, = A1g(S,a) s.t. E, fu, q(2) is small. Alg
is usually some iterative gradient-based approximation like
SGD to the empirical risk over S.

NAS Algorithms and Optimization Objectives: In con-
trast to the standard learning setting, NAS aims to select
both ¢ € A and w € W on the basis of training data, re-
ducing the need for human intervention to constructing a
search space and implementing a search algorithm, both of
which should be as amenable as possible to general-purpose,
domain-agnostic designs. Assuming a given training method
Alg, this leads to search objectives of the form

arg min Z fwa,a(2) s.t.

aeA eV

w, = A1g(T,a) (1)

where T,V < S are disjoint training and validation sets.
The main challenge with this search objective is intractabil-
ity: (1) A usually contains combinatorially many architec-
tures and (2) evaluating even one requires one run of Alg.
Modern NAS avoids these problems using two techniques:
continuous relaxation and weight-sharing (Pham et al. 2018;
Liu, Simonyan, and Yang 2019) First, the often-discrete ar-
chitecture search space A is relaxed into a convex space of
architecture parameters © > A such that any 6 € O is asso-
ciated with some architecture a € A via some discretization
mapping Map : © — A. For example, © could consist of

linear combinations of operations in .4 and Map could select
the one with the largest coefficient. After continuous relax-
ation, we can run search by updating 6 using gradients w.r.t.
fwa,0, replacing the approximation error incurred by trun-
cating the discrete optimization of (1) with the one incurred
by running the discretization Map on the output of

arg min Z Juwe.0(2) s.t. wy = A1g(T,0) (2)
be zeV

This addresses the first intractability issue, but computing
the architecture gradient w.r.t. fu, ¢ is still prohibitively
expensive due to the need to differentiate through Alg.
Weight-sharing resolves this via another approximation that
simply maintains a fixed set of shared weights w through-
out search and updates 0 using the gradient of f,, g, which
does not depend on Alg. This exploits the fact that chang-
ing 6 directly affects the objective fy, 9 and so having
different weights for different architectures, i.e. not shar-
ing them, is not necessary to distinguish their performance
(Li et al. 2020). The weight-sharing approximation to (2)
leads to alternating update methods (Pham et al. 2018;
Liu, Simonyan, and Yang 2019) in which gradient updates
to w using data from 7' are alternated with gradient updates
to 6 using data from V’; one can also define a single-level,
empirical risk minimization (ERM) objective

> fwol2) 3)

z€S

arg min min

gc®@ WEW

which can also be solved by alternating gradient updates,

just using the same data, or by joint gradient updates. De-

spite eschewing the usual data-splitting of most AutoML al-

gorithms, this objective has been found to do well in certain
NAS settings (Li et al. 2020).

The Goals of NAS: The use of weight-sharing, continu-
ous relaxation, and ERM blurs the line between NAS and
regular model training, since architecture parameters are op-
timized in much the same way as model weights during
search. The remaining differences are due to post-search
discretization, in which an architecture « = Map(d) € A
is recovered from the output 6 € © of (2) or (3), and
post-discretization re-training, in which new weights w =
Alg(S,a) are obtained with the discrete architecture. We
will blur the line even further by considering search spaces
that do not require post-search discretization and thus may
not need post-discretization re-training either.

It is thus useful to formally state our main objective, in
alignment with standard NAS (Liu, Simonyan, and Yang
2019; Ying et al. 2019), which is to use the given data T'
to find a ‘good’ architecture a € A, i.e., one such that
with suitable model weights w,, we obtain a function fy,,
with low test error. In practice, suitable model weights can
be obtained either via: (a) offline evaluation in which we
train model weights directly after discovering a, i.e., w, =
Alg(T,a); or (b) supernet evaluation in which we leverage
the model weights learned jointly with architectural param-
eters, as in (2) or (3).

For most instances of NAS with weight-sharing, offline
evaluation achieves better test performance than supernet

evaluation; this likely results from a combination of (1) over-
fitting while training w in-conjunction with relaxed archi-
tecture parameters 6, and (2) lossiness when discretizing to
obtain a valid architecture a = Map(6) post-search (Liu, Si-
monyan, and Yang 2019; Dong and Yang 2020). However,
our proposed search spaces do not require discretization, and
we will see that supernet evaluation sometimes outperforms
offline evaluation, which we view as a benefit since it re-
moves the need for re-training. Notably, while single-task
supernet evaluation can be viewed as similar in spirit to reg-
ular model training, as we use 1" to jointly train a weight-
architecture pair with low test error, we can isolate the qual-
ity of an architecture alone by performing supernet evalua-
tion in a transfer learning setting, which we explore in Sec-
tion 4.

3 Generalizing Convolutions with
Parameterizable Operations

The use of parameterized convolution operations to extract
features from images is a major architectural breakthrough
that has spearheaded most recent progress in computer vi-
sion (LeCun et al. 1999). Convolutions have also found nu-
merous application in other domains such as text (Kim 2014;
Zhang, Zhao, and LeCun 2015), but they may not be the
appropriate parameterized operation for all domains, or the
right kind of convolution may not always be evident or
easy to construct (Cohen et al. 2018). Our main question
is whether NAS can find a good parameterized neural prim-
itive for a given data domain. To investigate, we start with
a minimal requirement: that NAS can find an operation that
matches the performance of convolutions given computer vi-
sion data. This leads to our main contribution: a Chrysalis of
parameterizable K-operations that generalizes the convolu-
tion while preserving many of its desirable properties: small
description length, linearity, and efficiency. Substituting K-
operations for operations such as convolutions in backbone
architectures yields search spaces in which the goal is to
search the Chrysalis for a good K-operation to use on the
input data.

Desirable Properties of Parameterizable Neural Opera-
tions: We first define what a parameterizable operation is;
this is crucial for distinguishing our process of searching for
such operations compared to directly training model param-
eters for them.

Definition 3.1. A parameterizable operation Op(-,-) is a
function with two inputs, i.e., data and model parameters w,
and outputs a parameterized function Op(-, w).

For example, a linear layer is a parameterizable operation
that takes as input a matrix and outputs the corresponding
linear map; Neyshabur (2020) trains such layers in an at-
tempt to recover convolutional performance. Another exam-
ple is the Kaleidoscope layer (K-layer) of Dao et al. (2020),
which is similar except the matrix is constrained to be a
stack of one or more structured maps. Notably, these and
other works (Dao et al. 2019; Alizadeh vahid et al. 2020;
Ailon, Leibovich, and Nair 2020) fix the parameterizable op-
eration Op and learn its parameterization w; in contrast, we

»7
S Gl
L

Figure 1: Illustration of a K-operation parameterized by
weights w and K-matrices a = (K1, Ko, M), with elemen-
twise product in orange (left). a is found via search, while
weights w are retrained for the discovered a. Plot of super-
net evaluation of K-operations found when searching But-
terfLeNet as a function of depth (right).

12131151617 1810202122232
Depth

search for a good Op. In particular, we formulate our search
for a good Op via a search over architecture encodings a.
As discussed in Section 2, we give evidence that the NAS
approach of separating the search for a from the learning of
w yields good operations Op,, .

Our aim is to construct a search space that general-
izes the convolution Conv(-,-) while preserving its fa-
vorable, domain-independent properties; the goal will then
be to use NAS to find operations within this search space
that have good domain-dependent properties. We identify
three domain-independent properties possessed by functions
Conv (-, w) returned by the parameterizable convolution
for any fixed input dimension 7 > 1 and any model weights
w e ROM);

1. Short description length: parameterized function
Conv (-, w) can be represented with O(n) bits.

2. Linearity: 3 Ay, s.t. Conv(z, w) = A, for all
inputs ¢ € R™ and || A | Foc|w]2.

3. Fast computation: given arbitrary € R™ we can com-

pute Conv(x,w) in time O(n).
These properties have many learning-theoretic and compu-
tational advantages. In particular, models with short descrip-
tion length have better generalization guarantees (Shalev-
Shwartz and Ben-David 2014, Theorem 7.7); linearity is
also advantageous statistically due to its simplicity and
may interact better with optimization techniques such as
batch-norm and weight-decay (loffe and Szegedy 2015;
Zhang et al. 2019). The last property has clear importance
in practice and is intimately connected with the first, since
any linear transform with description length &(n) must take
time w(n).

The Chrysalis of Kaleidoscope Operations: To main-
tain these properties we turn to Kaleidoscope matrices (K-
matrices) (Dao et al. 2020), which are products of butter-
fly matrices (Parker 1995). Each butterfly matrix of dimen-
sion n x n is itself a product of logn sparse matrices with
a special fixed sparsity pattern, which encodes the recur-
sive divide-and-conquer algorithms such as the FFT. Each
butterfly matrix has a total of O(nlogn) parameters and
O(nlogn) runtime to multiply a vector x € R™. The depth
of a K-matrix refers to the number of butterfly matrices in
the product that form that K-matrix. Remarkably, all n x n

matrices whose matrix-vector products can be expressed as
a constant-depth arithmetic circuit with O(n) gates can be
represented as a constant-depth K-matrix with memory and
time complexity O(n) (Dao et al. 2020); for many spe-
cific matrices, including convolutions, the logarithmic fac-
tors also disappear. These matrices thus provide a simple
way to define a search space containing operations sharing
the desirable properties of convolutions.

Several works have proposed a parameterizable oper-
ations based on butterfly factors; for example Dao et
al. (2020) propose replace convolutional layers by K-
matrices. As discussed above, such approaches fix a param-
eterizable operation and train model weights for it rather
than finding one in a larger search space. In contrast we
propose to search over a space of kaleidoscope operations,
imposing the constraint that our selected K-operations have
same architecture parameterizations across all instantiations
in the resulting network, but can be parameterized by differ-
ent model weights in each instantiation. This is analogous to
the parameterization of the same convolution operation by
different models weights (or filters) at each instantiation in a
network. These K-operations comprise the Chrysalis, which
can be combined with backbone architectures to create new
search spaces containing potential operations for new do-
mains.

For simplicity, we motivate and formalize our design of
K-operations for the case of 1d input data; for higher di-
mensions, see Appendix A. To motivate our construction,
note that a convolution of an input x € R" with filters
w € R"™ can be expressed using the Fourier transform matrix
FeCrm

Conv(z,w) = F~! diag(Fw)Fx 4)

Thus we can obtain a space of parameterizable operations
that contains convolutions by varying the matrices in the ex-
pression above. Since F' and its inverse are both K-matrices
(Dao et al. 2020), this can be done efficiently as follows:

Definition 3.2. A Kaleidoscope operation K-Op,, of depth
k > 1 defined by three K-matrices a = (K1, Ko, M) of
depth k is an operation that, when parameterized by model
weights w € R", takes as input an arbitrary vector x € R"
and outputs Real(K diag(Mw)Ksx).

It is easy to show that K-operations satisfy the three desir-
able data-independent properties of convolutions. Further-
more, in the single-channel case the extended function class
K-Op,, (-, w) of depth k can trivially express any depth-2k
K-matrix transform by setting w = 1,, and M = I,,; this
includes well-known functions such as Fourier, cosine, and
wavelet transforms. Note that depth increases the expressiv-
ity of the space of K-operations and can be critical for per-
formance (c.f. Figure 1). In the multi-channel case a layer
of K-operations is less expressive than the K-layer of Dao
et al. (2020) but can still express average-pooling (a type of
convolution) and skip-connections, thus comprising most of
operations in NAS search spaces such as DARTS (Liu, Si-
monyan, and Yang 2019).

The caveat here is that the Chrysalis itself does not con-
tain these operations since it does not include any nonzero

Convolution K-Op,: warm start K-Op,: from scratch

| V7
a

Figure 2: Comparison of the filters, and filter analogues, pro-
duced by three parameterized operations trained on CIFAR-
10: convolutions, K-operations warm-started with convolu-
tions, and K-operations searched from scratch. The latter
two are discovered using Supernet SGD. In the case of con-
volutions, these are randomly selected filters at random po-
sitions on the input feature map. In the cases of the learned
K-operations, these are randomly selected neighborhoods of
the operation over the input feature map. The first layer of
the warm started K-operation remains mostly convolutional,
while the second layer pools features more globally. The
first layer of the from scratch K-operation has some local-
ity structure, while the second layer does not.

utterfLeNet Layer

operations that ignore the filter weights w, which is required
for parameter-free operations such as average pooling and
skip-connections. This can be easily rectified by adding per-
channel bias terms inside the diag that allow its output to
be the identity, setting up a channel-connection problem re-
lated to that of Wortsman, Farhadi, and Rastegari (2019).
However, we did not find simple algorithms for doing so em-
pirically beneficial and so leave further exploration to future
work.

4 Using the Chrysalis to Compete with
Convolutions

We now examine the viability of the Chrysalis to find good
K-operations on tasks where convolutions are known to
perform well. We first consider standard computer vision
tasks, i.e., the canonical application of convolutions, and
next study another well-known application of parameterized
convolutions: extracting features from temporal data such as
text (Kim 2014; Zhang, Zhao, and LeCun 2015).

ButterfLeNet-Searching for Good Operations on Image
Data. To construct a search space from (2d) K-operations,
we use the classic LeNet architecture (LeCun et al. 1999),
which consists of two convolutional layers followed by two
fully connected layers. We replace each convolutional layer
by a layer in which the same depth-9 K-Op is shared across
all input-output channels; our task on the resulting search
space, ButterfLeNet, is thus to learn two operations in to-
tal, one for each layer. Offline evaluation of the discovered
operation is conducted by fixing the architecture parameters
a and retraining the model weights using SGD with the same
hyperparameters used for LeNet.

Because K-operations comprise a continuous search

space, ButterfLeNet is amenable to standard gradient based
optimization without the need for continuous relaxation. At
the same time, it is not straightforward to define sampling-
based approaches beyond random search, which itself works
poorly due to the difficulty of the search space. We thus eval-
uate the following gradient-based methods, each with the
same fixed budget in terms of number of training epochs:

e DARTS (Liu, Simonyan, and Yang 2019): approximates
the bilevel objective (2) using Adam (Kingma and Ba
2015) to update the architecture parameters and SGD to
update the shared weights.

e Supernet SGD: direct optimization of the single-level ob-
jective (3) using SGD.

e Supernet SGDR: runs Supernet SGD but periodically re-
sets the step-size schedule and reinitializes model weights
w; inspired by the warm-restart method of Loshchilov
and Hutter (2017), it attempts to boost from-scratch
performance by “warm-starting” from a discovered K-
operation.

We further compare our discovered K-operations to four
natural parameterizable operations: linear (fully-connected)
layers, convolutions, K-layers, and random K-operations.

In Tables 1 we show that Supernet SGD is able to
search ButterfLeNet from random initialization to find K-
operations that match the performance of convolutions,
i.e. regular LeNet. Despite being less expressive, our ap-
proach also outperforms the fixed K-layer approach in which
all convolutions are replaced with fully-parameterized K-
matrices. Interestingly, supernet evaluation is worse for es-
tablished NAS methods like DARTS but better for direct
optimization, with Supernet SGD-R outperforming convo-
lutions by around 1.1% from scratch and 1.4% when warm-
started. Because of the K-operation construction, we can
also investigate the quality of K-operations found when we
“warm-start” K-Op, to be a convolution by setting the
K-matrices comprising a to the appropriate Fourier trans-
forms; doing so we find K-operations that outperform con-
volutions. Table 1 also shows a transfer learning exper-
iment that further demonstrates the usefulness of the K-
operations discovered on CIFAR-10: when the architecture
parameters are fixed and the weights retrained on CIFAR-
100, our operations outperform convolutions at test-time. Fi-
nally, we note the difficulty of our search space, as demon-
strated by the poor performance of random K-operations,
which do worse than even linear layers; this is in contrast
to most NAS search spaces, which are often easy-enough
to be solved by random search (Li and Talwalkar 2019;
Yang, Esperanga, and Carlucci 2020). We find that a larger
ButterfLeNet model, Wide ButterfLeNet, can still outper-
form convolutions in terms of supernet evaluation. This is
shown in Appendix A.

We also explore what operations are being learned, com-
paring convolutions, K-operations discovered by warm-
starting with convolutions, and K-operations found from-
scratch in Figure 2. Our visualizations suggest that learned
K-operations use more global information to extract fea-
tures, especially in the second ButterfLeNet layer discovered
from-scratch.

Table 1: Comparison of architectures found by searching ButterfLeNet on CIFAR-10. Results are averages over five random
seeds affecting both search and offline evaluation. When warm starting with convolutions, offline evaluation of Supernet SGD
outperforms fixed convolutions by 1% on both CIFAR-10 and on transfer to CIFAR-100. Furthermore, when search is initialized
to a random operation, offline evaluation of Supernet SGDR matches the performance of fixed convolutions. Finally, we find that
when warm starting with convolutions, supernet evaluation of ButterfLeNet using Supernet SGDR attains the best performance.

CIFAR fixed operation baselines DARTS Supernet SGD Supernet SGDR
classes (eval.) random Ist 2nd from warm from warm
linear conv K-layer K-op order order scratch start scratch start
10 (supernet) - - - - 51.25 70.25 7527 7643 76.84 7715
10 (offline) 59.17 7576 68.64 56.76 5792 71.88 73775 76.46 7543 7598
100 (offline™) 28.02 43.88 3926 2947 29.50 41.70 42.86 44.86 44.33 44.20

* For DARTS, Supernet SGD, and Supernet SGDR, a K-Op found on CIFAR-10 is transferred to CIFAR-100.

Table 2: Comparison of fixed operations and K-operations found via Supernet SGD over ButterfLeNet-Text. Tasks comprise a
standard set of text classification benchmarks. Either supernet or offline evaluation of warm started K-operations found using
Supernet SGD outperform the fixed operation baselines on all 7 datasets.

method evaluation @CR MPQA MR SST1 SST2 SUBJ TREC
baseline linear offline 73.89 88.37 71.22 3893 77.66 88.08 86.76
operations convolution offline 8147 9053 7875 45.03 8535 91.66 9248
from scratch ~ supernet 7874 90.51 77.43 4371 82.06 90.78 8§9.44
Supernet from scratch offline 78.58 91.24 76.09 4374 8256 90.40 90.44
SGD warm start supernet 83.11 90.84 80.00 4491 85.84 91.88 93.20
warm start offline 83.74 9090 79.72 4524 853 92.18 92.24
ButterfLeNet-Text: Searching for Good One- they are not optimal. We establish this in two simple settings

Dimensional Operations. We next consider applications
of temporal data such as text. We again use the Chrysalis
to replace convolutions in all input-output channels in an
existing model, namely the network of Kim (2014) which
has three parallel convolutional layers with different kernel
widths followed by a fully-connected layer; our task will be
to find a separate K-operation for each of layer.

Our evaluation focuses on a standard suite of sentence
classification tasks, with results presented in Table 2. As be-
fore, we compare the performance of Supernet SGD with the
baseline performance of fixed linear operations. In 5 out of
7 of the datasets considered, offline evaluation of Supernet
SGD where the K-operations are warm started yields higher
performance than all fixed operation baselines. On the re-
maining two datasets, supernet evaluation outperforms con-
volutions and offline evaluation matches the performance of
convolutions. We find that when the K-operations are ini-
tialized from scratch, offline evaluation substantially outper-
forms the fully connected baseline and, among the architec-
tures considered, achieves the highest test accuracy on the
MPQA dataset.

5 Beyond Convolutions and Towards a More
Ambitious NAS

Convolutions are well-suited to many applications, but they
are not always the best operation to use. Since our broader
goal is to enable users to apply the Chrysalis to find neural
primitives for whatever type of data they use, we now ask
whether our novel search spaces can be leveraged to find
operations that outperform convolutions in domains where

using the same approach as before: borrowing existing net-
work structures and replacing convolutions by K-operations.

ButterfLeNet: Unpermuting Image Data. Here we con-
sider a setting similar to vision, except a fixed permutation
of all rows and columns is applied to CIFAR images before
being passed as input. Since K-matrices can express both
convolutions and permutations, there exist K-operations that
do well on this data; this experiment thus tests whether we
can leverage our search space to identify these good opera-
tions. Note that Dao et al. (2019) report a related experiment,
in which they directly attempt to recover a permutation; our
setting is more difficult because we are simultaneously at-
tempting to do well on a classification task. Table 3 shows
that both supernet and offline evaluation of Supernet SGD
can attain nearly the same performance as in the unpermuted
case when searching from-scratch. Perhaps unsurprisingly,
warm-starting from convolutions performs worse. We also
outperform all fixed linear operations, including the K-layer
approach that is more expressive than our approach but ex-
periences a slightly larger drop in performance from Table 1.

ButterfLeNet-Spherical. Finally, we consider the spher-
ical MNIST dataset of Cohen et al. (2018), applying the
Chrysalis to their baseline model consisting of two convolu-
tional and one fully-connected layer. The spherical MNIST
dataset consists of a stereographic projection of the MNIST
dataset onto the sphere and a projection back to the plane,
resulting in a nonlinear distortion. The rotated variant ad-
ditionally applies random rotations before projecting back
to the plane. We compare convolutions to search spaces in-
duced by the Chrysalis. Since the spherical CNN of Cohen et
al. (2018) uses two types of spherical convolution layers, we

Table 3: Comparison of fixed operation baselines to Butterfl.eNet trained using Supernet SGD on permuted CIFAR-10 and
CIFAR-100. K-operations trained from scratch outperform all other methods on supernet evaluation, offline evaluation, and

transfer to CIFAR-100.

fixed operation baselines Supernet SGD
dataset linear conv K-layer from scratch warm start
CIFAR-10 (supernet) - - - 74.69 70.22
CIFAR-10 (offline) 59.61 58.90 66.16 72.99 69.56
CIFAR-100 (offlinex) 27.89 31.41 37.36 42.73 40.42

* For Supernet SGD, a K-Op found on CIFAR-10 is transferred to CIFAR-100.

Table 4: Comparison of spherical convolutions, convolutions, and NAS on the ButterfLeNet-Spherical search space, built atop
the convolutional baseline of Cohen et al. (2018). We test on the stereographically projected spherical MNIST as well as a

rotated variant (Cohen et al. 2018).

Spherical MNIST fixed operations Supernet SGD

subset (evaluation) conv spherical from scratch warm start warm start, from scratch
non-rotated (supernet) - - 98.44 97.26 98.56
non-rotated (offline) 97.59 96.49 98.55 98.23 98.87

rotated (supernet) 33.92 96.32 35.77 28.26 56.11

rotated (offline) 33.92 96.32 33.38 30.29 54.49

add an additional evaluation that only warm starts the first
layer to break the symmetry of initializing both operations
to be the same.

Table 4 shows that supernet and offline evaluation of Su-
pernet SGD both find operations that significantly outper-
form convolutions but are also significantly behind spherical
convolutions on the rotated spherical MNIST dataset. While
convolutions, spherical convolutions, and K-operations all
achieve high performance on the stereographically projected
data, spherical convolutions are specifically designed to be
invariant to rotation as well. It is unclear to what degree
K-matrices are expressive enough to capture rotational in-
variance of stereographic projections. On the other-hand,
our general-purpose approach significantly exceeds simple
convolutions. This demonstrates that while it is difficult
to match sophisticated operation designs, K-operations can
still lead to strong improvements over convolutions in new
domains.

6 Conclusion

Our goal in this work is to expand the scope of NAS beyond
simple search spaces in which we select from one of a few
different operations and towards a general approach encom-
passing many different neural primitives that can be adapted
to the underlying data. We introduced the Chrysalis, an ap-
proach for converting backbone networks into NAS search
spaces over K-operations, a set of operations generalizing
the convolution. Experimentally, we showed that the result-
ing search space could be searched to recover both convolu-
tions and other operations depending on the task data, exam-
ining several domains to do so. We anticipate future work to
scale up this approach to larger search spaces, more general
topologies, and broader sets of applications.

A Appendix
Higher-Dimensional Kaleidoscope Operations

To generalized Kaleidoscope operations to higher dimen-
sion, we simply perform the Kaleidoscope operations on
each dimension of the input. This is similar to how 2d-FFT
is done by performing two 1d-FFTs on each dimension of
the input.

More precisely, we take the Kronecker product (denoted
by ®) of the 1d Kaleidoscope matrices in the 1d Kaleido-
scope operation. For simplicity of notation, we assume that
the two dimensions have the same size n.

Definition A.1. A 2d Kaleidoscope operation K-Op,
of depth k > 1 defined by six K-matrices a =
(K171, Kl’g, Kgyl, KQ,Q, Ml, MQ) ofdepth k is an oper-
ation that, when parameterized by model weights w €]R”Q,
takes as input an arbitrary vector x € R™ and outputs
Real(K1 dlag(Mw)Kgm) where K1 = K171 ® KLQ,
KQ = K271 ®K212, and M = M1 ® MQ.

It is also straightforward to generalize to N-d:

Definition A.2. An N-d Kaleidoscope operation K-Op,,
of depth k > 1 defined by 3N K-matrices a =
(K171, . Kl,N7 }(2717 ey KQ,N,]\417 ey MN) Of depth k
is an operation that, when parameterized by model weights
w € R”N, takes as input an arbitrary vector x €
R"" and outputs Real(K; diag(Mw)Ksx) where K| =
®i]\i1K1’i, K2 = ®£\L1K2’Z', and M = ®fV:1MZ

Wide ButterfLeNet

We show that warm started supernet training of a larger
LeNet architecture can outperform its fixed convolutional
counterpart. These results are presented in Table 5.

Table 5: Performance on CIFAR-10 of a larger variant of
LeNet (“Wide LeNet”) with a greater number of channels.
Here, supernet evaluation of warm started Supernet SGD
achieves the highest performance on CIFAR-10.

Supernet SGD
dataset conv from scratch warm start
CIFAR-10 (supernet) - 78.42 87.27
CIFAR-10 (offline) 86.72 76.51 86.72

Experimental Details

ButterfLeNet-vision For all LeNet experiments, we use
the LeNet architecture except padding is added to the convo-
lutional layers to preserve feature map dimension, and ReLU
activations are used. Namely, this is convolution (3, 6), aver-
age pooling (2, 2), convolution (6, 16), average pooling (2,
2), linear (120), linear (84), linear (10 or 100). 5 x 5 ker-
nels are used throughout. The linear baseline consists of 4
linear layers with ReLU activations. In particular, that is lin-
ear (6 * 16 * 16), linear (16 * 8 * &), linear (120), linear
(84), linear (10 or 100). The K-layer baseline replaces all
convolutions in LeNet with K-layers of the same shape. A
K-layer consists of two K-matrices per input-output channel
pair. For ButterfLeNet experiments, we replace each con-
volutional layer in LeNet with a K-operation of the same
shape, and parameterized by the same number of model pa-
rameters as the analogous convolutional layer. In particular
for our warm start experiments, we initialize K and Ko
to be inverse Fourier transform and Fourier transform ma-
trices scaled to be unitary, while M is initialized to be a
unscaled Fourier transform matrix. Each of these are depth
1 K-matrices. When initializing K-operations from scratch,
we use depth 9 K-matrices with unitary initialization. That
is, K1, Ko, M are each a product of 9 K-matrices, where
K1, Ko, M are each initialized to be random unitary matri-
ces.

Wide LeNet comprises 3 convolutional layers with more
channels than LeNet, and two linear layers. In particular,
convolution (3, 32), batch norm, convolution (32, 64), batch
norm, convolution (64, 128), linear (128), batch norm, lin-
ear (10 or 100). Here, convolutions use 3 x 3 filters. As
before, ReLU activations are used. Wide ButterfLeNet re-
places all convolutional layers with K-operations of corre-
sponding dimension. In both the warm start and from scratch
settings, we tie the operations between the second and third
K-operation layers.

For offline evaluation (except DARTS) and models with
fixed operations, we train for 200 epochs using SGD with
a learning rate of 0.01, decreased to 0.005 at epoch 100,
to 0.001 at epoch 150 and a minibatch size of 128. We
use a weight decay of 0.0001. For all methods except from
scratch ButterfLeNet, we employ data augmentation with
random cropping and random horizontal flipping. For from
scratch ButterfLeNet, we instead employ the Fast AutoAug-
ment policy found on CIFAR-10 (Lim et al. 2019). For of-
fline evaluation of DARTS, we train using the Adam opti-
mizer (Kingma and Ba 2015) to stay faithful to the original
DARTS formulation.

For Supernet SGD methods, we train the supernet for 800
epochs using SGD and an initial learning rate of 0.01, de-
creased to 0.005 at epoch 400, to 0.001 at epoch 600. We use
the same augmentation scheme used for baselines and offline
evaluation, where from scratch ButterfL.eNet uses Fast Au-
toAugment. We use a weight decay of 0.0001. First and sec-
ond order DARTS use Adam (with a learning rate of 0.001)
for optimizing architecture parameters as well as a bilevel
training routine. First order DARTS alternates between up-
dating architecture parameters and model parameters using
a validation set and the training set. In practice, we parti-
tion the training set into equally sized subsets. Second or-
der DARTS uses a second order gradient with a ‘lookahead’
step, which is approximated using a finite difference approx-
imation. We find that the second order update is more stable
in our search spaces.

For Supernet SGDR methods, we train the supernet 4
times for 200 epochs each, using SGD with a learning rate
of 0.01, decreased to 0.005 at epoch 100, to 0.001 at epoch
150. All other hyperparameters are the same as above.

ButterfLeNet-text Our convolutional baseline is the con-
volutional architecture proposed by Kim (2014) with static
word2vec embeddings. This architecture involves three 1d
convolutional layers in parallel with different filter sizes (3,
4, and 5), and 100 output channels each, which are concate-
nated. This is followed by 1d max pooling, and a 300 x k
linear layer where k is the number of classes in the clas-
sification task. The linear baseline replaces the three par-
allel convolutional layers with a single linear layer. For
both of these, the ReLU activation function is used through-
out. ButterfLeNet-text, which generalizes the convolutional
baseline, replaces all 1d convolutions with 1d K-operations
of the same dimensionality. For from scratch, we use depth
9 K-operations.

We use the same training procedure for supernet training,
offline evaluation, and fixed operations. In particular, we use
the Adadelta optimizer (Zeiler 2012) and train using early
stopping with a patience parameter of 3 based on a held out
validation set. We use a batch size of 50 and employ dropout
with a probability of 0.5 on the final linear layer.

ButterfLeNet-spherical The baseline convolutional ar-
chitecture that we consider comprises two convolutional lay-
ers and a fully connected layer. Both convolutional layers
have 5 x 5 kernels with a stride of 3, the first has 20 out-
put channels and the second has 40 output channels, and
use ReLU throughout. This is followed by a linear layer.
ButterfLeNet-spherical replaces these convolutions with K-
operations. We warm start the first K-operation as convolu-
tions and initialize the second one from scratch.

We use the same training procedure for supernet training,
offline evaluation, and fixed operations. Namely, we train for
20 epochs using Adam with a learning rate of 0.0005 and a
minibatch size of 32.

References

Ailon, N.; Leibovich, O.; and Nair, V. 2020. Sparse linear
networks with a fixed butterfly structure: Theory and prac-
tice. arXiv.

Alizadeh vahid, K.; Prabhu, A.; Farhadi, A.; and Rastegari,
M. 2020. Butterfly transform: An efficient FFT based neural
architecture design. In Proceedings of the IEEE Conference
on Conference on Computer Vision and Pattern Recognition.

Bergstra, J., and Bengio, Y. 2012. Random search for hyper-
parameter optimization. Journal of Machine Learning Re-
search 13:281-305.

Cai, H.; Gan, C.; Wang, T.; Zhang, Z.; and Han, S. 2020.
Once-for-all: Train one network and specialize it for effi-
cient deployment. In Proceedings of the 8th International
Conference on Learning Representations.

Cohen, T. S.; Geiger, M.; Koehler, J.; and Welling, M. 2018.
Spherical CNNs. In Proceedings of the 6th International
Conference on Learning Representations.

Dao, T.; Gu, A.; Eichhorn, M.; Rudra, A.; and Ré, C. 2019.
Learning fast algorithms for linear transforms using butter-
fly factorizations. In Proceedings of the 36th International
Conference on Machine Learning.

Dao, T.; Sohoni, N.; Gu, A.; Eichhorn, M.; Blonder, A.;
Leszczynski, M.; Rudra, A.; and Ré, C. 2020. Kaleidoscope:
An efficient, learnable representation for all structured linear
maps. In Proceedings of the 8th International Conference on
Learning Representations.

Dong, X., and Yang, Y. 2020. NAS-Bench-201: Extending
the scope of reproducible neural architecture search. In Pro-
ceedings of the 8th International Conference on Learning
Representations.

Elsken, T.; Staffler, B.; Metzen, J. H.; and Hutter, F. 2019.
Meta-learning of neural architectures for few-shot learning.
arXiv.

Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. In Proceedings of the 32nd International Conference
on Machine Learning.

Kim, Y. 2014. Convolutional neural networks for sentence
classification. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing.
Kingma, D. P, and Ba, J. 2015. Adam: A method for
stochastic optimization. In Proceedings of the 3rd Interna-
tional Conference on Learning Representations.

LeCun, Y.; Haffner, P.; Bottou, L.; and Bengio, Y. 1999.
Object recognition with gradient-based learning. In Shape,
Contour and Grouping in Computer Vision.

Li, L., and Talwalkar, A. 2019. Random search and repro-
ducibility for neural architecture search. In Proceedings of
the Conference on Uncertainty in Artificial Intelligence.

Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; and
Talwalkar, A. 2018. Hyperband: A novel bandit-based ap-
proach to hyperparameter optimization. Journal of Machine
Learning Research 18(185):1-52.

Li, L.; Khodak, M.; Balcan, M.-F.; and Talwalkar, A. 2020.
Geometry-aware gradient algorithms for neural architecture
search. arXiv.

Lim, S.; Kim, I.; Kim, T.; Kim, C.; and Kim, S. 2019. Fast
autoaugment.

Liu, H.; Simonyan, K.; and Yang, Y. 2019. DARTS: Dif-
ferentiable architecture search. In Proceedings of the 7th
International Conference on Learning Representations.

Loshchilov, 1., and Hutter, F. 2017. SGDR: Stochastic gra-
dient descent with warm restarts. In Proceedings of the 5th
International Conference on Learning Representations.

Mei, J.; Li, Y.; Lian, X.; Jin, X.; Yang, L.; Yuille, A.; and
Yang, J. 2020. AtomNAS: Fine-grained end-to-end neural
architecture search. In Proceedings of the 8th International
Conference on Learning Representations.

Nekrasov, V.; Chen, H.; Shen, C.; and Reid, I. 2019. Fast
neural architecture search of compact semantic segmenta-
tion models via auxiliary cells. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

Neyshabur, B. 2020. Towards learning convolutions from
scratch. arXiv.

Parker, D. S. 1995. Random butterfly transformations with
applications in computational linear algebra. Technical re-
port, UCLA.

Pham, H.; Guan, M. Y.; Zoph, B.; Le, Q. V.; and Dean,
J. 2018. Efficient neural architecture search via parameter
sharing. In Proceedings of the 35th International Confer-
ence on Machine Learning.

Real, E.; Liang, C.; So, D. R.; and Le, Q. V. 2020. AutoML-
Zero: Evolving machine learning algorithms from scratch.
In Proceedings of the 37th International Conference on Ma-
chine Learning.

Shalev-Shwartz, S., and Ben-David, S. 2014. Understanding
Machine Learning: From Theory to Algorithms. Cambridge
University Press.

Thrun, S., and Pratt, L. 1998. Learning to Learn. Springer
Science & Business Media.

Wang, Y.; Yang, Y.; Chen, Y.; Bai, J.; Zhang, C.; Su, G.;
Kou, X.; Tong, Y.; Yang, M.; and Zhou, L. 2020. Textnas:
A neural architecture search space tailored for text repre-
sentation. In Proceedings of the 34th AAAI Conference on
Artificial Intelligence.

Wortsman, M.; Farhadi, A.; and Rastegari, M. 2019. Dis-
covering neural wirings. In Advances in Neural Information
Processing Systems.

Xu, Y.; Xie, L.; Zhang, X.; Chen, X.; Qi, G.-J.; Tian, Q.; and
Xiong, H. 2020. PC-DARTS: Partial channel connections
for memory-efficient architecture search. In Proceedings of
the 8th International Conference on Learning Representa-
tions.

Yang, A.; Esperanca, P. M.; and Carlucci, F. M. 2020. NAS
evaluation is frustratingly hard. In Proceedings of the 8th
International Conference on Learning Representations.

Ying, C.; Klein, A.; Christiansen, E.; Real, E.; Murphy, K.;
and Hutter, F. 2019. NAS-Bench-101: Towards reproducible
neural architecture search. In Proceedings of the 36th Inter-
national Conference on Machine Learning.

Zeiler, M. D. 2012. Adadelta: An adaptive learning rate
method.

Zela, A.; Siems, J.; and Hutter, F. 2020. NAS-Bench-
1Shotl: Benchmarking and dissecting one-shot neural ar-
chitecture search. In Proceedings of the 8th International
Conference on Learning Representations.

Zhang, G.; Wang, C.; Xu, B.; and Grosse, R. 2019. Three
mechanisms of weight decay regularization. In Proceedings
of the 7th International Conference on Learning Represen-
tations.

Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level
convolutional networks for text classification. In Advances
in Neural Information Processing Systems.

Zhou, A.; Knowles, T.; and Finn, C. 2020. Meta-learning
symmetries by reparameterization. arXiv.

