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Abstract

Recent state-of-the-art methods for neural architecture search
(NAS) exploit gradient-based optimization by relaxing the
problem into continuous optimization over architectures and
shared-weights, a noisy process that remains poorly under-
stood. We argue for the study of single-level empirical risk
minimization to understand NAS with weight-sharing, reduc-
ing the design of NAS methods to devising optimizers and
regularizers that can quickly obtain high-quality solutions
to this problem. Invoking the theory of mirror descent, we
present a geometry-aware framework that exploits the underly-
ing structure of this optimization to return sparse architectural
parameters, leading to simple yet novel algorithms that en-
joy fast convergence guarantees and achieve state-of-the-art
accuracy on the latest NAS benchmarks in computer vision.
Notably, we exceed the best published results for both CI-
FAR and ImageNet on both the DARTS search space and
NAS-Bench-201; on the latter we achieve near-oracle-optimal
performance on CIFAR-10 and CIFAR-100. Together, our
theory and experiments demonstrate a principled way to co-
design optimizers and continuous relaxations of discrete NAS
search spaces.

Introduction
Neural architecture search has become an important tool
for automating machine learning (ML) but can require hun-
dreds of thousands of GPU-hours to train. Recently, weight-
sharing approaches have achieved state-of-the-art perfor-
mance while drastically reducing the computational cost of
NAS to just that of training a single shared-weights network
(Pham et al. 2018; Liu, Simonyan, and Yang 2019). Methods
such as DARTS (Liu, Simonyan, and Yang 2019), GDAS
(Dong and Yang 2019), and many others (Pham et al. 2018;
Zheng et al. 2019; Yang et al. 2020; Xie et al. 2019;
Liu et al. 2018; Laube and Zell 2019; Cai, Zhu, and Han 2019;
Akimoto et al. 2019; Xu et al. 2020) combine weight-
sharing with a continuous relaxation of the discrete search
space to allow cheap gradient updates, enabling the use of
popular optimizers. However, despite some empirical suc-
cess, weight-sharing remains poorly understood and has re-
ceived criticism due to (1) rank-disorder (Yu et al. 2020;
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Zela, Siems, and Hutter 2020; Zhang et al. 2020; Pourchot,
Ducarouge, and Sigaud 2020), where the shared-weights per-
formance is a poor surrogate of standalone performance, and
(2) poor results on recent benchmarks (Dong and Yang 2020;
Zela et al. 2020).

Motivated by the challenge of developing simple and effi-
cient methods that achieve state-of-the-art performance, we
study how to best handle the goals and optimization objec-
tives of NAS. We start by observing that weight-sharing sub-
sumes architecture hyperparameters as another set of learned
parameters of the shared-weights network, in effect extend-
ing the class of functions being learned. This suggests that
a reasonable approach towards obtaining high-quality NAS
solutions is to study how to regularize and optimize the empir-
ical risk over this extended class. While many regularization
approaches have been implicitly proposed in recent NAS
efforts, we focus instead on the question of optimizing archi-
tecture parameters, which may not be amenable to standard
procedures such as SGD that work well for standard neu-
ral network weights. In particular, to better-satisfy desirable
properties such as generalization and sparsity of architectural
decisions, we propose to constrain architecture parameters to
the simplex and update them using exponentiated gradient,
which has favorable convergence properties due to the un-
derlying problem structure. Theoretically, we draw upon the
mirror descent meta-algorithm (Nemirovski and Yudin 1983;
Beck and Teboulle 2003) to give convergence guarantees
when using any of a broad class of such geometry-aware
gradient methods to optimize the weight-sharing objective;
empirically, we show that our solution leads to strong im-
provements on several NAS benchmarks. We summarize
these contributions below:

1. We argue for studying NAS with weight-sharing as a
single-level objective over a structured function class in
which architectural decisions are treated as learned pa-
rameters rather than hyperparameters. Our setup clarifies
recent concerns about rank disorder and makes clear that
proper regularization and optimization of this objective is
critical to obtaining high-quality solutions.

2. Focusing on optimization, we propose to improve exist-
ing NAS algorithms by re-parameterizing architecture
parameters over the simplex and updating them using



exponentiated gradient, a variant of mirror descent that
converges quickly over this domain and enjoys favor-
able sparsity properties. This simple modification—which
we call the Geometry-Aware Exponentiated Algorithm
(GAEA)—is easily applicable to numerous methods, in-
cluding first-order DARTS (Liu, Simonyan, and Yang
2019), GDAS (Dong and Yang 2019), and PC-DARTS
(Xu et al. 2020).

3. To show correctness and efficiency of our scheme, we
prove polynomial-time stationary-point convergence of
block-stochastic mirror descent—a family of geometry-
aware gradient algorithms that includes GAEA—over a
continuous relaxation of the single-level NAS objective.
To the best of our knowledge these are the first finite-time
convergence guarantees for gradient-based NAS.

4. We demonstrate that GAEA improves upon state-of-the-
art methods on three of the latest NAS benchmarks for
computer vision. Specifically, we beat the current best
results on NAS-Bench-201 (Dong and Yang 2020) by
0.18% on CIFAR-10, 1.59% on CIFAR-100, and 0.82%
on ImageNet-16-120; we also outperform the state-of-the-
art on the DARTS search space (Liu, Simonyan, and Yang
2019), for both CIFAR-10 and ImageNet, and match it on
NAS-Bench-1Shot1 (Zela et al. 2020).1

Related Work. Most optimization analyses of NAS show
monotonic improvement (Akimoto et al. 2019), asymptotic
guarantees (Yao et al. 2020), or bounds on auxiliary quan-
tities disconnected from any objective (Noy et al. 2019;
Nayman et al. 2019; Carlucci et al. 2019). In contrast, we
prove polynomial-time stationary-point convergence on a
single-level objective for weight-sharing NAS, so far only
studied empirically (Xie et al. 2019; Li et al. 2019). Our
results draw upon the mirror descent meta-algorithm (Ne-
mirovski and Yudin 1983; Beck and Teboulle 2003) and
extend recent nonconvex convergence results (Zhang and He
2018) to handle alternating descent. While there exist related
results (Dang and Lan 2015) the associated guarantees do not
hold for the algorithms we propose. Finally, we note that a
variant of GAEA that modifies first-order DARTS is related
to XNAS (Nayman et al. 2019), whose update also involves
exponentiated gradient; however, GAEA is simpler and eas-
ier to implement.2 Furthermore, the regret guarantees for
XNAS do not relate to any meaningful performance measure
for NAS such as speed or accuracy, whereas we guarantee
convergence on the ERM objective.

The Weight-Sharing Optimization Problem
In supervised ML we have a dataset T of labeled pairs (x, y)
drawn from a distribution D over input/output spaces X
and Y . The goal is to use T to search a function class H

1Code to obtain these results has been made available here:
https://github.com/liamcli/gaea release

2XNAS code does not implement search and, as with previous ef-
forts (Li et al. 2019, OpenReview), we cannot reproduce results after
correspondence with the authors. XNAS’s best architecture achieves
an average test error of 2.70% under the DARTS evaluation, while
GAEA achieves 2.50%. For details see the appendix.

for hw : X 7→ Y parameterized by w ∈ Rd that has low
expected test loss `(hw(x), y) when using x to predict the
associated y on unseen samples drawn from D, as measured
by some loss ` : Y × Y 7→ [0,∞). A common way to do so
is by approximate (regularized) empirical risk minimization
(ERM), i.e. finding w ∈ Rd with the smallest average loss
over T , via some iterative method Alg, e.g. SGD.

Benefits and Criticisms of Weight-Sharing for NAS
NAS is often viewed as hyperparameter optimization on top
of Alg, with each architecture a ∈ A corresponding to a
function class Ha = {hw,a : X 7→ Y,w ∈ Rd} to be
selected by using validation data V ⊂ X × Y to evaluate the
predictor obtained by fixing a and doing approximate ERM
over T :

min
a∈A

∑
(x,y)∈V

`(hwa,a(x), y) s.t. wa = Alg(T, a) (1)

Since training individual sets of weights for any sizeable
number of architectures is prohibitive, weight-sharing meth-
ods instead use a single set of shared weights to obtain
validation signal about many architectures at once. In its
most simple form, RS-WS (Li and Talwalkar 2019), these
weights are trained to minimize a non-adaptive objective,
minw∈Rd Ea

∑
(x,y)∈T `(hwa,a(x), y), where the expecta-

tion is over a fixed distribution over architectures A. The
final architecture a is then chosen to maximize the outer (val-
idation) objective in (1) subject to wa = w. More frequently
used is a bilevel objective over some continuous relaxation Θ
of the architecture space A, after which a valid architecture
is obtained via a discretization step Map : Θ 7→ A (Pham et
al. 2018; Liu, Simonyan, and Yang 2019):

min
θ∈Θ

∑
(x,y)∈V

`(hw,θ(x), y)

s.t. w ∈ arg min
u∈Rd

∑
(x,y)∈T

`(hu,θ(x), y)
(2)

This objective is not significantly different from (2), since
Alg(T, a) approximately minimizes the empirical risk w.r.t.
T ; the difference is replacing discrete architectures with re-
laxed architecture parameters θ ∈ Θ, w.r.t. which we can
take derivatives of the outer objective. This allows (2) to be
approximated via alternating gradient updates w.r.t. w and
θ. Relaxations can be stochastic, so that Map(θ) is a sam-
ple from a θ-parameterized distribution (Pham et al. 2018;
Dong and Yang 2019), or a mixture, in which case Map(θ)
selects architectural decisions with the highest weight in a
convex combination given by θ (Liu, Simonyan, and Yang
2019). We overview this in more detail in the appendix3.

While weight-sharing significantly shortens search (Pham
et al. 2018), it draws two main criticisms:

• Rank disorder: this describes when the rank of an architec-
ture a according to the validation risk evaluated with fixed
shared weights w is poorly correlated with the one using

3A full version of the paper including the appendix can be found
here: https://openreview.net/pdf?id=MuSYkd1hxRP



“standalone” weights wa = Alg(T, a). This causes sub-
optimal architectures to be selected after shared weights
search (Yu et al. 2020; Zela, Siems, and Hutter 2020;
Zhang et al. 2020; Pourchot, Ducarouge, and Sigaud 2020).

• Poor performance: weight-sharing can converge to de-
generate architectures (Zela et al. 2020) and is outper-
formed by regular hyperparameter tuning on NAS-Bench-
201 (Dong and Yang 2020).

Single-Level NAS as a Baseline Object of Study
Why are we able to apply weight-sharing to NAS? The key
is that, unlike regular hyperparameters such as step-size, ar-
chitectural hyperparameters directly affect the loss function
without requiring a dependent change in the model weights
w. Thus we can distinguish architectures without retraining
simply by changing architectural decisions. Besides enabling
weight-sharing, this point reveals that the goal of NAS is
perhaps better viewed as a regular learning problem over an
extended class HA =

⋃
a∈AHa = {hw,a : X 7→ Y,w ∈

Rd, a ∈ A} that subsumes the architectural decisions as pa-
rameters of a larger model class, an unrelaxed “supernet.” The
natural approach to solving this is by approximate empirical
risk minimization, e.g. by approximating continuous objec-
tive below on the right using a gradient algorithm and passing
the output θ through Map to obtain a valid architecture:

min
w∈Rd,a∈A

∑
(x,y)∈T

`(hw,a(x), y)
discrete (unrelaxed)

supernet (NAS ERM)

min
w∈Rd,θ∈Θ

∑
(x,y)∈T

`(hw,θ(x), y) continuous relaxation
(supernet ERM)

(3)

Several works have optimized this single-level objective as
an alternative to bilevel (2) (Xie et al. 2019; Li et al. 2019).
We argue for its use as the baseline object of study in NAS
for three reasons:
1. As discussed above, it is the natural first approach to

solving the statistical objective of NAS: finding a good
predictor hw,a ∈ HA in the extended function class over
architectures and weights.

2. The common alternating gradient approach to the bilevel
problem (2) is in practice very similar to alternating block
approaches to ERM (3); as we will see, there are estab-
lished ways of analyzing such methods for the latter ob-
jective, while for the former convergence is known only
under very strong assumptions such as uniqueness of the
inner minimum (Franceschi et al. 2018).

3. While less frequently used in practice than bilevel, single-
level optimization can be very effective: we use it to
achieve new state-of-the-art results on NAS-Bench-201
(Dong and Yang 2020).

Understanding NAS as single-level optimization—the usual
deep learning setting—makes weight-sharing a natural, not
surprising, approach. Furthermore, for methods—both single-
level and bilevel—that adapt architecture parameters during
search, it suggests that we need not worry about rank disorder
as long as we can use optimization to find a single feasible
point that generalizes well; we explicitly do not need a rank-
ing. Non-adaptive methods such as RS-WS still do require

rank correlation to select good architectures after search, but
they are explicitly not changing θ and so have no variant
solving (3). The single-level formulation thus reduces search
method design to well-studied questions of how to best regu-
larize and optimize ERM. While there are many techniques
for regularizing weight-sharing—including partial channels
(Xu et al. 2020) and validation Hessian penalization (Zela et
al. 2020)—we focus on the second question of optimization.

Geometry-Aware Gradient Algorithms
We seek to minimize the (possibly regularized) empirical risk
f(w, θ) = 1

|T |
∑

(x,y)∈T `(hw,θ(x), y) over shared-weights
w ∈ Rd and architecture parameters θ ∈ Θ. Assuming
we have noisy gradients of f w.r.t. w or θ at any point
(w, θ) ∈ Rd ×Θ—i.e. ∇̃wf(w, θ) or ∇̃θf(w, θ) satisfying
E∇̃wf(w, θ) = ∇wf(w, θ) or E∇̃θf(w, θ) = ∇θf(w, θ),
respectively—our goal is a point where f , or at least its gra-
dient, is small, while taking as few gradients as possible. Our
main complication is that architecture parameters lie in a
constrained, non-Euclidean domain Θ. Most search spaces
A are product sets of categorical decisions—which opera-
tion o ∈ O to use at edge e ∈ E—so the natural relaxation
is a product of |E| |O|-simplices. However, NAS methods
often re-parameterize Θ to be unconstrained using a softmax
and then SGD or Adam (Kingma and Ba 2015). Is there a
better parameterization-algorithm co-design? We consider a
geometry-aware approach that uses mirror descent to design
NAS methods with better properties depending on the do-
main; a key desirable property is to return sparse architectural
parameters to reduce loss from post-search discretization.

Background on Mirror Descent
Mirror descent has many formulations (Nemirovski and
Yudin 1983; Beck and Teboulle 2003; Shalev-Shwartz 2011);
the proximal starts by noting that, in the unconstrained case,
an SGD update at a point θ ∈ Θ = Rk given gradient esti-
mate ∇̃f(θ) with step-size η > 0 is equivalent to

θ−η∇̃f(θ) = arg min
u∈Rk

η∇̃f(θ) ·u +
1

2
‖u−θ‖22 (4)

Here the first term aligns the output with the gradient while
the second (proximal) term regularizes for closeness to the
previous point as measured by the Euclidean distance. While
the SGD update has been found to work well for uncon-
strained high-dimensional optimization, e.g. deep nets, this
choice of proximal regularization may be sub-optimal over
a constrained space with sparse solutions. The canonical
such setting is optimization over the unit simplex, i.e. when
Θ = {θ ∈ [0, 1]k : ‖θ‖1 = 1}. Replacing the `2-regularizer
in Equation 4 by the relative entropy u · (logu− log θ), i.e.
the KL-divergence, yields the exponentiated gradient (EG)
update (� denotes element-wise product):

θ � exp(−η∇̃f(θ))

∝ arg min
u∈Θ

η∇̃f(θ) · u + u · (logu− log θ)
(5)



Algorithm 1: Block-stochastic mirror descent optimization of a function f : Rd ×Θ 7→ R.

Input: initialization (w(1), θ(1)) ∈ Rd ×Θ, strongly-convex DGF φ : Θ 7→ R, number of iterations T ≥ 1, step-size η > 0
for iteration t = 1, . . . , T do

sample bt ∼ Unif{w, θ} // randomly select update block
if block bt = w then

w(t+1) ← w(t) − η∇̃wf(w(t), θ(t)) // SGD update to shared weights

θ(t+1) ← θ(t) // no update to architecture params
else

w(t+1) ← w(t) // no update to shared weights

θ(t+1) ← arg minu∈Θ η∇̃θf(w(t), θ(t)) · u + Dφ(u||θ(t)) // update architecture params

Output: (w(r), θ(r)) for r ∼ Unif{1, . . . , T} // return random iterate

Note that the full EG update is obtained by `1-normalizing
the l.h.s. It is well-known that EG over the k-dimensional sim-
plex requires only O(log k)/ε2 iterations to achieve a func-
tion value ε-away from optimal (Beck and Teboulle 2003),
compared to the O(k/ε2) guarantee of gradient descent.
This nearly dimension-independent iteration complexity is
achieved by choosing a regularizer—the KL divergence—
well-suited to the underlying geometry—the simplex. More
generally, mirror descent is specified by a distance-generating
function (DGF) φ that is strongly-convex w.r.t. some norm. φ
induces a Bregman divergence Dφ(u||v) = φ(u)− φ(v)−
∇φ(v) · (u− v) (Bregman 1967), a notion of distance on Θ
that acts as a regularizer in the mirror descent update:

arg min
u∈Θ

η∇̃f(θ) · u + Dφ(u||θ) (6)

For example, to recover SGD (4) we set φ(u) = 1
2‖u‖

2
2,

which is strongly-convex w.r.t. the Euclidean norm, while EG
(5) is recovered by setting φ(u) = u · logu, strongly-convex
w.r.t. the `1-norm.

Block-Stochastic Mirror Descent
In the previous section we saw how mirror descent can per-
form better over certain geometries such as the simplex. How-
ever, in weight-sharing we are interested in optimizing over a
hybrid geometry containing both the shared weights in an un-
constrained Euclidean space and the architecture parameters
in a non-Euclidean domain. Thus we focus on optimization
over two blocks: shared weights w ∈ Rd and architecture
parameters θ ∈ Θ, the latter associated with a DGF φ that
is strongly-convex w.r.t. some norm ‖ · ‖. In NAS a com-
mon approach is to perform alternating gradient steps on
each domain; for example, both ENAS (Pham et al. 2018)
and first-order DARTS (Liu, Simonyan, and Yang 2019) al-
ternate between SGD on the shared weights and Adam on
architecture parameters. This approach is encapsulated in the
block-stochastic algorithm described in Algorithm 1, which
at each step chooses one block at random to update using
mirror descent (recall that SGD is a variant) and after T steps
returns a random iterate. Algorithm 1 generalizes the single-
level variant of both ENAS and first-order DARTS if SGD is
used to update θ instead of Adam, with some mild caveats:
in practice blocks are picked cyclically and the algorithm
returns the last iterate, not a a random one. To analyze the

convergence of Algorithm 1 we first state some regularity
assumptions on the function:
Assumption 1. Suppose φ is strongly-convex w.r.t. some
norm ‖ · ‖ on a convex set Θ and the objective function
f : Rd ×Θ 7→ [0,∞) satisfies the following:
1. γ-relatively-weak-convexity: f(w, θ)+γφ(θ) is convex

on Rd ×Θ for some γ > 0.
2. gradient bound: E‖∇̃wf(w, θ)‖22 ≤ G2

w and
E‖∇̃θf(w, θ)‖2∗ ≤ G2

θ for some Gw, Gθ ≥ 0.
The second assumption is a standard bound on the gradient

norm while the first is a generalization of smoothness that al-
lows all smooth and some non-smooth non-convex functions
(Zhang and He 2018).

Our aim will be to show (first-order) ε-stationary-point
convergence of Algorithm 1, a standard metric indicating that
it has reached a point with no feasible descent direction, up to
error ε; for example, in the unconstrained Euclidean case an ε-
stationary-point is simply one where the gradient has squared-
norm ≤ ε. The number of steps required to obtain such a
point thus measures how fast a first-order method terminates.
Stationarity is also significant as a necessary condition for
optimality.

In our case Θ may be constrained and so the gradient
may never be small, thus necessitating a measure other than
gradient norm. We use Bregman stationarity (Zhang and He
2018), which measures stationary at a point (w, θ) using the
Bregman divergence between the point and its proximal map
proxλ(w, θ) = arg minu∈Rd×Θ λf(u)+D`2,φ(u||w, θ) for
some λ > 0:
∆λ(w, θ)

=
D`2,φ(w, θ||proxλ(w, θ)) +D`2,φ(proxλ(w, θ)||w, θ)

λ2

(7)

Here λ = 1
2γ and the Bregman divergenceD`2,φ is that of the

DGF 1
2‖w‖

2
2 + φ(θ) that encodes the geometry of the joint

optimization domain over w ∈ Rd and θ; note that the de-
pendence of the stationarity measure on γ is standard (Dang
and Lan 2015; Zhang and He 2018).

To understand why reaching a point (w, θ) with small
Bregman stationarity is a reasonable goal, note that the prox-
imal operator proxλ has the property that its fixed points, i.e.
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Figure 1: Sparsity: Evolution over search phase epochs of the average entropy of the operation-weights for GAEA and approaches
it modifies when run on the DARTS search space (left), NAS-Bench-1Shot1 Search Space 1 (middle), and NASBench-201 on
CIFAR-10 (right). GAEA reduces entropy much more quickly, allowing it to quickly obtain sparse architecture weights. This
leads to both faster convergence to a single architecture and a lower loss when pruning at the end of search.

those satisfying (w, θ) = proxλ(w, θ), correspond to points
where f has no feasible descent direction. Thus measuring
how close (w, θ) is to being a fixed point of proxλ—as is
done using the Bregman divergence in (7)—is a good mea-
sure of how far away the point is from being a stationary
point of f . Finally, note that if f is smooth, φ is Euclidean,
and Θ is unconstrained—i.e. if we are running SGD over
architecture parameters as well—then ∆ 1

2γ
≤ ε implies an

O(ε)-bound on the squared gradient norm, recovering the
standard definition of ε-stationarity. More intuition on proxi-
mal operators can be found in Parikh and Boyd (2013), while
further details on Bregman stationarity and how it relates to
notions of convergence can be found in Zhang and He (2018).

The following result shows that Algorithm 1 needs poly-
nomially many iterations to finds a point (w, θ) with ε-small
Bregman stationarity in-expectation:
Theorem 1. Let F = f(w(1), θ(1)) be the value of f at
initialization. Under Assumption 1, if we run Algorithm 1
for T = 16γF

ε2 (G2
w + G2

θ) iterations with step-size η =√
4F

γ(G2
w+G2

θ)T
then E∆ 1

2γ
(w(r), θ(r)) ≤ ε. Here the expec-

tation is over the randomness of the algorithm and gradients.
The proof in the appendix follows from single-block anal-

ysis (Zhang and He 2018) and in fact holds for the gen-
eral case of any number of blocks associated to any set of
strongly-convex DGFs. Although there are prior results for
the multi-block case (Dang and Lan 2015), they do not hold
for nonsmooth Bregman divergences such as the KL diver-
gence needed for exponentiated gradient.

Thus Algorithm 1 returns an ε-stationary-point given T =
O(G2

w +G2
θ)/ε

2 iterations, where G2
w bounds the squared

`2-norm of the shared-weights gradient ∇̃w and G2
θ bounds

the squared magnitude of the architecture gradient ∇̃θ, as
measured by the dual norm ‖ · ‖∗ of ‖ · ‖. Only the last
term Gθ is affected by our choice of DGF φ. The DGF of
SGD is strongly-convex w.r.t. the `2-norm, which is its own
dual, so G2

w is defined via `2. However, for EG the DGF
φ(u) = u · logu is strongly-convex w.r.t. the `1-norm, whose
dual is `∞. Since the `2-norm of a k-dimensional vector can
be
√
k times its `∞-norm, picking this DGF can lead to better

bound on Gθ and thus on the number of iterations.

A Geometry-Aware Exponentiated Algorithm
Equipped with these single-level guarantees, we turn to de-
signing methods that can in-principle be applied to both
the single-level and bilevel objectives, seeking parameter-
izations and algorithms that converge quickly and encourage
favorable properties; in particular, we focus on returning ar-
chitecture parameters that are sparse to reduce loss due to
post-search discretization. EG is often considered to con-
verge quickly to sparse solutions over the simplex (Bradley
and Bagnell 2008; Bubeck 2019), which makes it a natural
choice for the architecture update. We thus propose GAEA, a
Geometry-Aware Exponentiated Algorithm in which op-
eration weights on each edge are constrained to the simplex
and trained using EG; as in DARTS, the shared weights w are
trained using SGD. GAEA can be used as a simple, principled
modification to the many NAS methods that treat architecture
parameters θ ∈ Θ = R|E|×|O| as real-valued “logits” to be
passed through a softmax to obtain mixture weights or prob-
abilities for simplices over the operations O. Such methods
include DARTS, PC-DARTS (Xu et al. 2020), and GDAS
(Dong and Yang 2019). To apply GAEA, first re-parameterize
Θ to be the product set of |E| simplices, each associated to
an edge (i, j) ∈ E; thus θi,j,o corresponds directly to the
weight or probability of operation o ∈ O for edge (i, j), not a
logit. Then, given a stochastic gradient ∇̃θf(w(t), θ(t)) and
step-size η > 0, replace the architecture update by EG:

θ̃(t+1) ← θ(t) � exp
(
−η∇̃θf(w(t), θ(t))

)
multiplicative

update

θ
(t+1)
i,j,o ←

θ̃
(t+1)
i,j,o∑

o′∈O θ̃
(t+1)
i,j,o′

∀ o ∈ O, ∀ (i, j) ∈ E simplex
projection

(8)

These two simple modifications, re-parameterization and
exponentiation, suffice to obtain state-of-the-art results on
several NAS benchmarks. Note that to obtain a bilevel algo-
rithm we simply replace the gradient w.r.t. θ of the training
loss with that of the validation loss.

GAEA is equivalent to Algorithm 1 with φ(θ) =∑
(i,j)∈E

∑
o∈O θi,j,o log θi,j,o, which is strongly-convex

w.r.t. ‖ · ‖1/
√
|E| over the product of |E| |O|-simplices.



Table 1: DARTS: Comparison with SOTA NAS methods on the DARTS search space, plus three results on different search
spaces with a similar number of parameters reported at the top for comparison. All evaluations and reported performances of
models found on the DARTS search space use similar training routines; this includes auxiliary towers and cutout but no
other modifications, e.g. label smoothing (Müller, Kornblith, and Hinton 2019), AutoAugment (Cubuk et al. 2019), Swish
(Ramachandran, Zoph, and Le 2017), Squeeze & Excite (Hu, Shen, and Sun 2018), etc. The specific training procedure we
use is that of PC-DARTS, which differs slightly from the DARTS routine by a small change to the drop-path probability;
PDARTS tunes both this and batch-size. Our results are averaged over 10 random seeds. Search cost is hardware-dependent;
we used Tesla V100 GPUs. For more details see the appendix.

CIFAR-10 Error Search Cost ImageNet Error Search Cost
Search Method (source) Best Average (GPU Days) top-1 top-5 (GPU Days) method

NASNet-A∗ (Zoph et al. 2018) - 2.65 2000 26.0 8.4 1800 RL
AmoebaNet-B∗ (Real et al. 2019) - 2.55± 0.05 3150 24.3 7.6 3150 evolution
ProxylessNAS∗ (2019) 2.08 - 4 24.9 7.5 8.3 gradient (WS)

ENAS (Pham et al. 2018) 2.89 - 0.5 - - - RL (WS)
RS-WS† (Li and Talwalkar 2019) 2.71 2.85± 0.08 0.7 - - - random (WS)
ASNG (Akimoto et al. 2019) - 2.83± 0.14 0.1 - - - gradient (WS)
SNAS (Xie et al. 2019) - 2.85± 0.02 1.5 27.3 9.2 1.5 gradient (WS)
DARTS (1st)† (2019) - 3.00± 0.14 0.4 - - - gradient (WS)
DARTS (2nd)† (2019) - 2.76± 0.09 1 26.7 8.7 4.0 gradient (WS)
PDARTS (Chen et al. 2019) 2.50 - 0.3 24.4 7.4 0.3 gradient (WS)
PC-DARTS† (Xu et al. 2020) - 2.57± 0.07 0.1 24.2 7.3 3.8 gradient (WS)
GAEA PC-DARTS† (ours) 2.39 2.50± 0.06 0.1 24.0 7.3 3.8 gradient (WS)
PC-DARTS† (Xu et al. 2020) (search on CIFAR-10, train on ImageNet) 25.1 7.8 0.1 gradient (WS)
GAEA PC-DARTS† (ours) (search on CIFAR-10, train on ImageNet) 24.3 7.3 0.1 gradient (WS)
∗

Search space/backbone differ from the DARTS setting; we show results for networks with a comparable number of parameters.
†

For fair comparison to other work, we show the search cost for training the shared-weights network with a single initialization.

The dual is
√
|E|‖ · ‖∞, so if Gw bounds the shared-weights

gradient and we have an entry-wise bound on the architecture
gradient then GAEA reach ε-stationarity inO(G2

w + |E|)/ε2

iterations. This can be up to a factor |O| improvement over
SGD, either over the simplex or the logit space. In addition,
GAEA encourages sparsity in the architecture weights by us-
ing a multiplicative update over simplices and not an additive
update over R|E|×|O|. Obtaining sparse architecture param-
eters is critical for good performance, both for the mixture
relaxation, where it alleviates the effect of discretization on
the validation loss, and for the stochastic relaxation, where it
reduces noise when sampling architectures.

Empirical Results using GAEA
We evaluate GAEA on three different computer vision bench-
marks: the large and heavily studied search space from
DARTS (Liu, Simonyan, and Yang 2019) and two smaller
oracle evaluation benchmarks, NAS-Bench-1Shot1 (Zela et
al. 2020), and NAS-Bench-201 (Dong and Yang 2020). NAS-
Bench-1Shot1 differs from the others by applying operations
per node instead of per edge, while NAS-Bench-201 dif-
fers by not requiring edge-pruning. Since GAEA can modify
a variety of methods, e.g. DARTS, PC-DARTS (Xu et al.
2020), and GDAS (Dong and Yang 2019), on each bench-
mark we start by evaluating the GAEA variant of the current
best method on that benchmark. We show that despite the
diversity of search spaces, GAEA improves upon this state-
of-the-art across all three. Note that we use the same step-size
for GAEA variants of DARTS/PC-DARTS and do not require

weight-decay on architecture parameters. We defer experi-
mental details and hyperparameter settings to the appendix
and release all code, hyperparameters, and random seeds for
reproducibility.

Convergence and Sparsity of GAEA
We first examine the impact of GAEA on convergence and
sparsity. Figure 1 shows the entropy of the operation weights
averaged across nodes for a GAEA-variant and its base
method across the three benchmarks, demonstrating that it
decreases much faster for GAEA-modified approaches. This
validates our expectation that GAEA encourages sparse ar-
chitecture parameters, which should alleviate the mismatch
between the continuously relaxed architecture parameters and
the discrete architecture returned. Indeed, we find that post-
search discretization on the DARTS search space causes the
validation accuracy of the PC-DARTS supernet to drop from
72.17% to 15.27%, while for GAEA PC-DARTS the drop
is only 75.07% to 33.23%; note that this is shared-weights
accuracy, obtained without retraining the final network. The
numbers demonstrate that GAEA both (1) achieves better
supernet optimization of the weight-sharing objective and (2)
suffers less due to discretization.

GAEA on the DARTS Search Space
Here we evaluate GAEA on the task of designing CNN
cells for CIFAR-10 (Krizhevksy 2009) and ImageNet (Rus-
sakovsky et al. 2015) by using it to modify PC-DARTS (Xu
et al. 2020), the current state-of-the-art method. We follow



Figure 2: NAS-Bench-1Shot1: Online comparison of PC-DARTS and GAEA PC-DARTS in terms of the test regret at each
epoch of shared-weights training, i.e. the difference between the ground truth test error of the proposed architecture and that
of the best architecture in the search space. The dark lines indicate the mean of four random trials and the light colored bands
± one standard deviation. The dashed line is the final regret of the best weight-sharing method according to Zela, Siems, and
Hutter (2020); note that in our reproduction PC-DARTS performed better than their evaluation on spaces 1 and 3.

the same three stage process used by both DARTS and RS-
WS for search and evaluation. Table 1 displays results on
both datasets and demonstrates that GAEA’s parameteriza-
tion and optimization scheme improves upon PC-DARTS.
In fact, GAEA PC-DARTS outperforms all search meth-
ods except ProxylessNAS, which uses 1.5 times as many
parameters on a different search space. Thus we improve
the state-of-the-art on the DARTS search space. To meet
a higher bar for reproducibility on CIFAR-10, in the ap-
pendix we report “broad reproducibility” (Li and Talwalkar
2019) by repeating our pipeline with new seeds. While
GAEA PC-DARTS consistently finds good networks when
selecting the best of four independent trials, multiple tri-
als are required due to sensitivity to initialization, as is
true for many approaches (Liu, Simonyan, and Yang 2019;
Xu et al. 2020).

On ImageNet, we follow Xu et al. (2020) by using sub-
samples containing 10% and 2.5% of the training images
from ILSVRC-2012 (Russakovsky et al. 2015) as training
and validation sets, respectively. We fix architecture param-
eters for the first 35 epochs, then run GAEA PC-DARTS
with step-size 0.1. All other hyperparameters match those
of Xu et al. (2020). Table 1 shows the final performance of
both the architecture found by GAEA PC-DARTS on CIFAR-
10 and the one found directly on ImageNet when trained
from scratch for 250 epochs using the same settings as Xu et
al. (2020). GAEA PC-DARTS achieves a top-1 test error of
24.0%, which is state-of-the-art performance in the mobile
setting when excluding additional training modifications, e.g.
those in the caption. Additionally, the architecture found by
GAEA PC-DARTS for CIFAR-10 and transferred achieves a
test error of 24.2%, comparable to the 24.2% error of the one
found by PC-DARTS directly on ImageNet. Top architectures
found by GAEA PC-DARTS are depicted in the appendix.

GAEA on NAS-Bench-1Shot1
NAS-Bench-1Shot1 (Zela et al. 2020) is a subset of NAS-
Bench-101 (Ying et al. 2019) that allows benchmarking
weight-sharing methods on three search spaces over CIFAR-
10 that differ in the number of nodes considered and the num-
ber of input edges per node. Of the weight-sharing methods

benchmarked by Zela et al. (2020), we found that PC-DARTS
achieves the best performance on 2 of 3 search spaces, so we
again evaluate GAEA PC-DARTS here. Figure 2 shows that
GAEA PC-DARTS consistently finds better architectures on
average than PC-DARTS and thus exceeds the performance
of the best method from Zela et al. (2020) on 2 of 3 search
spaces. We hypothesize that the benefits of GAEA are limited
here due to the near-saturation of NAS methods. In particu-
lar, existing methods obtain within 1% test error of the top
network in each space, while the latters’ test errors when
evaluated with different initializations are 0.37%, 0.23% and
0.19%, respectively.

GAEA on NAS-Bench-201
NAS-Bench-201 has one search space on three datasets—
CIFAR-10, CIFAR-100, and ImageNet-16-120—that in-
cludes 4-node architectures with an operation from O =
{none, skip connect, 1x1 convolution, 3x3 convolution, 3x3
avg pool} on each edge, yielding 15625 possible networks.
Table 2 reports a subset of results from Dong and Yang (2020)
alongside GAEA approaches, showing that GDAS is the best
previous weight-sharing method. Our reproduced results for
GDAS are slightly worse than published ones but confirm its
position. We evaluate GAEA GDAS and find that it achieves
better results on CIFAR-100 than our reproduced runs and
similar results on the other two.

Since we are interested in improving upon the reported
results, we also investigate the performance of GAEA applied
to first-order DARTS. We evaluate GAEA DARTS with both
single-level (ERM) and bilevel optimization; recall that in
the latter case we optimize architecture parameters w.r.t. the
validation loss and the shared weights w.r.t. the training loss,
whereas in ERM there is no data split. GAEA DARTS (ERM)
achieves state-of-the-art performance on all three datasets,
exceeding the test accuracy of both weight-sharing and tra-
ditional hyperparameter tuning by a wide margin. GAEA
DARTS (bilevel) performs worse but still exceeds all other
methods on CIFAR-100 and ImageNet-16-120. The result
thus also confirms the relevance of studying the single-level
case to understand NAS; notably, the DARTS (ERM) baseline
also improves substantially upon DARTS (bilevel) baseline.



Table 2: NAS-Bench-201: Results are separated into those for weight-sharing methods that were reported by
Dong and Yang (2020) (top), our reproductions and GAEA-modifications of weight-sharing methods (middle),
and those for traditional hyperparameter optimization methods that were reported by Dong and Yang (2020)
(bottom).

Search (seconds) CIFAR-10 (test) CIFAR-100 (test) ImageNet-16-120 (test)
RSPS 7587 87.66± 1.69 58.33± 4.34 31.14± 3.88
DARTS 35781 54.30± 0.00 15.61± 0.00 16.32± 0.00
SETN 34139 87.64± 0.00 59.05± 0.24 32.52± 0.21
GDAS 31609 93.61± 0.09 70.70± 0.30 41.71± 0.98

GDAS (reproduced) 27923∗ 93.52± 0.15 67.52± 0.15 40.91± 0.12
GAEA GDAS 16754∗ 93.55± 0.13 70.47± 0.47 40.91± 0.12
DARTS (bilevel) 10683∗ 54.30± 0.00 15.32± 0.00 28.96± 10.22
GAEA DARTS (bilevel) 7930∗ 91.63± 2.57 71.87± 0.57 45.69± 0.56
DARTS (ERM) 18112∗ 84.39± 3.82 51.26± 6.14 31.35± 7.46
GAEA DARTS (ERM) 9061∗ 94.10± 0.29 73.43± 0.13 46.36± 0.00

REA N/A 93.92± 0.30 71.84± 0.99 45.54± 1.03
RS N/A 93.70± 0.36 71.04± 1.08 44.57± 1.25
REINFORCE N/A 93.85± 0.37 71.71± 1.09 45.25± 1.18
BOHB N/A 93.61± 0.52 70.85± 1.28 44.42± 1.49

ResNet N/A 93.97 70.86 43.63
Optimal N/A 94.37 73.51 47.31
∗

Search cost measured on NVIDIA P100 GPUs.

Conclusion
In this paper we take an optimization-based view of NAS,
arguing that the design of good NAS algorithms is largely
a matter of successfully optimizing and regularizing the su-
pernet. In support of this, we develop GAEA, a simple mod-
ification of gradient-based NAS that attains state-of-the-art
performance on several computer vision benchmarks while
enjoying favorable speed and sparsity properties. We believe
that obtaining high-performance NAS algorithms for a wide
variety of applications will continue to require a similar co-
design of search space parameterizations and optimization
methods, and that our geometry-aware framework can help
accelerate this process. In particular, most modern NAS al-
gorithms search over products of categorical decision spaces,
to which our approach is directly applicable. More generally,
as the field moves towards more ambitious search spaces,
e.g. full-network topologies or generalizations of operations
such as convolution or attention, these developments may
result in new architecture domains for which our work can in-
form the design of appropriate, geometry-aware optimization
methods.
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