TABLE OF CONTENTS-- OVERVIEW

Full text can be purchased online from booksellers offering this title

INTRODUCTION TO ENGINEERING AND THE ENVIRONMENT

Edward S. Rubin
McGraw-Hill, 2001
ISBN 0-07-235467-4

PART 1: MOTIVATION AND FRAMEWORK
Chapter 1. Engineering and the Environment
Chapter 2. Overview of Environmental Issues

PART 2: TECHNOLOGY DESIGN FOR THE ENVIRONMENT
Chapter 3. Automobiles and the Environment
Chapter 4. Batteries and the Environment
Chapter 5. Power Plants and the Environment
Chapter 6. Refrigeration and the Environment
Chapter 7. Environmental Life Cycle Assessments

PART 3: MODELING ENVIRONMENTAL PROCESSES
Chapter 8. Controlling Urban Smog
Chapter 9. PCBs in the Aquatic Environment
Chapter 10. Human Exposure to Toxic Metals
Chapter 11. CFCs and the Ozone Hole
Chapter 12. Global Warming and Climate Change

PART 4: TOPICS IN ENVIRONMENTAL POLICY ANALYSIS
Chapter 13. Economic Analysis
Chapter 14. Risk Assessment and Decision Analysis
Chapter 15. Environmental Forecasting

APPENDIX: SI Unit Prefixes
Atomic Weight of Selected Elements
Useful Conversion Factors
TABLE OF CONTENTS--DETAIL

INTRODUCTION TO ENGINEERING AND THE ENVIRONMENT

Edward S. Rubin

McGraw-Hill, 2001
ISBN 0-07-235467-4

PART 1: MOTIVATION AND FRAMEWORK

1. ENGINEERING AND THE ENVIRONMENT
 1.1. Introduction
 1.2. What Is “The Environment”?
 1.3. Framing Environmental Issues
 1.3.1. Good Change or Bad?
 1.3.2. Enter Public Policy
 1.4. The Role of Engineering
 1.5. Approaches to “Green” Engineering
 1.5.1. Sources of Environmental Impacts
 1.5.2. A Life-Cycle Perspective
 1.5.3. Industrial Ecology and Sustainable Development
 1.6. Basic Engineering Principles
 1.6.1. Conservation of Mass
 1.6.2. Conservation of Energy
 1.6.3. The Use of Mathematical Models
 1.7. What Lies Ahead
 1.8. References
 1.9. Problems

2. OVERVIEW OF ENVIRONMENTAL ISSUES
 2.1. Introduction
 2.2. Environmental Concerns
 2.3. Atmospheric Emissions
 2.3.1. Criteria Air Pollutants
 2.3.2. Air Toxics
 2.3.3. Acid Deposition
 2.3.4. Greenhouse Gases
 2.4. Water Pollution
 2.4.1. Sources and Uses of Water
 2.4.2. Major Water Contaminants
 2.4.3. Drinking Water Quality
 2.4.4. Surface Water Quality
 2.4.5. Ground Water Quality
 2.5. Solid and Hazardous Wastes
 2.5.1. Hazardous Wastes
 2.5.2. Non-Hazardous Wastes
 2.6. Radioactive Wastes
 2.6.1. High-Level Waste
 2.6.2. Transuranic Wastes
 2.6.3. Low-Level Waste
 2.6.4. Uranium Mill Tailing
 2.7. Depletion of Natural Resources
 2.8. Land Use and Ecological Impacts
 2.8.1. Biodiversity
PART 2: TECHNOLOGY DESIGN FOR THE ENVIRONMENT

3. AUTOMOBILES AND THE ENVIRONMENT

3.1. The Automobile and Society
3.2. Environmental Impacts of the Automobile
 3.2.1. Urban Air Pollution
 3.2.2. Greenhouse Gas Emissions
 3.2.3. Materials Use And Solid Waste
 3.2.4. Other Environmental Impacts
3.3. Fuel and Energy Requirements
 3.3.1. Power for Cruising
 3.3.2. Power for Hill Climbing
 3.3.3. Power for Acceleration
 3.3.4. Energy Efficiency
 3.3.5. Fuel Consumption
3.4. Engineering Cleaner Cars
 3.4.1. Designing for Energy Efficiency
 3.4.2. Understanding Pollutant Formation
 3.4.3. Designing for Low Emissions
 3.4.4. Alternative Fuels
 3.4.5. Alternative Vehicles
3.5. Conclusions
3.6. References
3.7. Problems

4. BATTERIES AND THE ENVIRONMENT

4.1. Introduction
 4.1.1. Environmental Concerns
 4.1.2. Recent “Green” Efforts
4.2. Battery Basics
 4.2.1. A Brief History
 4.2.2. How a Battery Works
 4.2.3. Theoretical Voltage
 4.2.4. Theoretical Capacity
 4.2.5. Actual Capacity
4.3. Battery Features
 4.3.1. Voltage Versus Time
 4.3.2. Effect of Operating Temperature
 4.3.3. Shelf Life
 4.3.4. Lifetime of Rechargeable Batteries
 4.3.5. Battery Rechargers
4.4. Applications That Use Batteries
 4.4.1. Discharge Characteristics Based on Current Draw
 4.4.2. Using Multiple Batteries
4.5. Conclusion
4.6. References
4.7. Problems

5. ELECTRIC POWER PLANTS AND THE ENVIRONMENT

5.1. The Role of Electric Power
5.2. Overview of Environmental Impacts
 5.2.1. Environmental Impacts of Fossil Fuels
 5.2.2. Environmental Impacts of Nuclear Power
 5.2.3. Environmental Impacts of Renewable Energy

5.3. Electric Power Fundamentals
 5.3.1. Current, Voltage and Power
 5.3.2. Energy, Heat and Work
 5.3.3. Electromechanical Generators
 5.3.4. Turbines and Energy Sources

5.4. Performance of Fossil Fuel Power Plants
 5.4.1. Steam-Electric Plants
 5.4.2. Gas Turbine Plants
 5.4.3. Combined Cycle Plants

5.5. Reducing Environmental Impacts
 5.5.1. Environmental Control Technology
 5.5.2. Improving Energy Efficiency

5.6. Alternative Energy Sources and Technology
 5.6.1. Nuclear Energy
 5.6.2. Biomass and Refuse Energy
 5.6.3. Geothermal Energy
 5.6.4. Hydroelectric Energy
 5.6.5. Wind Energy
 5.6.6. Electrochemical Generators
 5.6.7. Photovoltaic Generators

5.7. Comparing Environmental Impacts

5.8. Looking Ahead
 5.8.1. Environmental Outlook
 5.8.2. Technology Outlook

5.9. Conclusion

5.10. References

5.11. Problems

6. REFRIGERATION AND THE ENVIRONMENT

6.1. Introduction
6.2. Environmental Overview
6.3. Alternative Refrigerants
6.4. Fundamentals of Refrigeration
 6.4.1. Primary Energy Flows
 6.4.2. The Refrigeration Cycle
 6.4.3. Some Basic Questions
 6.4.4. Thermodynamic Relationships
 6.4.5. Refrigerant Properties
6.5. Designing a CFC-Free Refrigerator
 6.5.1. Refrigerant Mass Flow
 6.5.2. Refrigerant Charge
 6.5.3. Refrigeration Cycle Efficiency
 6.5.4. Comparison of Alternative Refrigerants
6.6. Reducing Energy Consumption
 6.6.1. Compressor Energy Requirements
 6.6.2. Auxiliary Energy Requirements
 6.6.3. Total Energy Consumption
 6.6.4. Effect of Thermal Insulation Design
 6.6.5. Energy Impact of CFC Substitutes
6.7. Trends and Future Technology
 6.7.1. Energy Efficiency Standards
 6.7.2. The Fridge of the Future
6.8. Conclusion
6.9. References
7. **ENVIRONMENTAL LIFE CYCLE ASSESSMENTS**

7.1. Introduction
7.2. Principles of Life Cycle Assessment
 7.2.1. Making Decisions about Product Design
 7.2.2. Steps in a Life Cycle Assessment
 7.2.3. Scope of a Life Cycle Assessment
7.3. Inventory Analysis
 7.3.1. Major Components of an Inventory Analysis
 7.3.2. Case Study of a Computer Housing
 7.3.3. Quantitative Analysis of the Computer Housing
7.4. Impact Analysis
 7.4.1. Categories of Impacts
 7.4.2. Ranking Environmental Impacts
 7.4.3. Quantification of Impacts
7.5. Improvement Analysis
 7.5.1. Improvement in Electrical Shielding of the Computer Housing
 7.5.2. Improvement in Waste Management of the Computer Housing
7.6. Conclusions
7.7. References
7.8. Problems

PART 3: MODELING ENVIRONMENTAL PROCESSES

8. **CONTROLLING URBAN SMOG**

8.1. Introduction to Urban Air Pollution
 8.1.1. London Smog
 8.1.2. Los Angeles Smog
8.2. Achieving Air Quality Goals
 8.2.1. Units of Measurement
 8.2.2. Air Quality Standards
 8.2.3. Sources of Emissions
 8.2.4. The Role of Engineers
8.3. Accumulation of Pollutants in an Urban Area
 8.3.1. Non-Reacting Pollutants Under Steady-State Conditions
 8.3.2. Non-Reacting Pollutants Under Dynamic Conditions
 8.3.3. Reactive Pollutants Under Dynamic Conditions
8.4. Ozone in the Atmosphere
 8.4.1. Urban Ozone Levels
 8.4.2. Ozone Health Effects
 8.4.3. Bad Ozone vs. Good Ozone
8.5. Formation of Ozone in Urban Areas
 8.5.1. The Photochemical Cycle
 8.5.2. The Role of Hydrocarbons
 8.5.3. Photochemical Smog and Meteorology
8.6. Controlling Ozone Formation
 8.6.1. Effect of VOC Concentration on Ozone Formation
 8.6.2. Effect of NOx Concentration on Ozone Formation
 8.6.3. Ozone Isopleth Diagrams
 8.6.4. Control Strategy Regimes
 8.6.5. Ozone Formation Potential of Hydrocarbons
8.7. Conclusion
8.8. References
8.9. Problems

9. **PCBs IN THE AQUATIC ENVIRONMENT**
9.1. Introduction: What are PCBs?
9.2. Toxicity of PCBs
9.3. PCBs in the Environment
 9.3.1. Fate and Concentration of PCBs
 9.3.2. Environmental Standards for PCBs
9.4. Chemistry of PCBs
9.5. Release of PCBs from Sources
 9.5.1. Pathways of release
 9.5.2. Example: PCBs in Boston Harbor
9.6. Movement of PCBs in Receiving Waters
 9.6.1. Mixing and Dilution
 9.6.2. Settling of Particles
9.7. Partitioning of PCBs in Receiving Water Systems
 9.7.1. Partitioning Between River Water and Sediments
 9.7.2. Partitioning Between River Water and Fish
 9.7.3. PCBs in the Hudson River
9.8. Conclusions
9.9. References
9.10. Problems

10. Human Exposure to Toxic Metals
10.1. Introduction
10.2. A Brief History of Metallurgy
10.3. Release of Metals to the Environment: Evidence of Adverse Effects
10.4. Pathways of Human Exposure to Trace Metals
 10.4.1. Distribution of Trace Metals in the Environment
 10.4.2. Trace Metals in the Air
 10.4.3. Trace Metals in Water
 10.4.4. Trace Metals in Food
 10.4.5. Dust and Soil
 10.4.6. Quantifying Total Human Exposure
10.5. Total Dose of Absorbed Metals
10.6. Doses in a Population
10.7. Response to a Dose
10.8. Conclusions
10.9. References
10.10. Problems

11. CFCs and the Ozone Hole
11.1. Introduction: The Problem of Ozone Depletion
11.2. The Natural Ozone Layer
 11.2.1. The Structure of the Atmosphere
 11.2.2. Ultraviolet Radiation from the Sun
 11.2.3. Formation and Destruction of Ozone
 11.2.4. Measurement of Ozone Concentrations
11.3. Chlorofluorocarbons (CFCs) and Halocarbons
 11.3.1. What are CFCs?
 11.3.2. The Naming Convention for CFCs
11.4. CFC Destruction of Stratospheric Ozone
 11.4.1. Mechanisms of Ozone Destruction by CFCs in the Mid-latitudes
 11.4.2. Mechanisms of Ozone Destruction by CFCs in the Antarctic
11.5. Quantifying Ozone Destruction by CFCs: The Mass Balance Model
 11.5.1. Calculating Amounts of CFC in the Atmosphere
 11.5.2. Calculating Amounts of Ozone Depletion from CFCs
11.6. Solutions to the CFC Problem: The Montreal Protocol
11.6.1. Ozone Depletion Potential
11.6.2. Potential Environmental Tradeoffs
11.7. Conclusions
11.8. References
11.9. Problems

12. GLOBAL WARMING AND THE GREENHOUSE EFFECT

12.1. Introduction
12.1.1. Greenhouse Gas Emissions and Atmospheric Change
12.1.2. The Global Climate System
12.1.3. Chapter Overview
12.2. Fundamentals of the Greenhouse Effect
12.2.1. The Nature of Radiative Energy
12.2.2. Solar Energy Reaching Earth
12.2.3. A Simple Earth Energy Balance
12.2.4. Temperature and the Radiative Spectrum
12.2.5. The Earth’s Atmosphere
12.2.6. Radiative Properties of the Atmosphere
12.2.7. Greenhouse Effect Defined
12.2.8. Earth Energy Balance Revisited
12.2.9. Actual Radiative Balance
12.3. Radiative Forcing of Climate Change
12.3.1. Modes of Radiative Forcing
12.3.2. Net Forcing from Atmospheric Changes
12.3.3. Quantifying Radiative Forcing
12.3.4. Radiative Forcing vs. Concentration
12.3.5. Radiative Forcing in the Industrial Age
12.3.6. Equivalent CO₂ Concentration
12.4. Temperature Changes from Radiative Forcing
12.4.1. Restoring the Earth’s Energy Balance
12.4.2. Evaluating the Climate Sensitivity Factor
12.4.3. Results from Observational Data
12.4.4. Results From Climate Models
12.4.5. Time Lags and Temperature Commitment
12.5. Climate Change Predictions
12.5.1. Temperature Change Since Pre-Industrial Times
12.5.2. Global Warming in the 21st Century
12.6. Historical Temperature Changes
12.7. Stabilizing Atmospheric Concentrations
12.7.1. Atmospheric Lifetime of Greenhouse Gases
12.7.2. The Carbon Cycle
12.7.3. Stabilization Scenarios
12.8. CO₂ Emissions and Energy Use
12.8.1. Carbon Content of Fuels
12.8.2. Energy Content of Fuels
12.8.3. The Carbon Intensity of Fuels
12.8.4. Regional Sources of CO₂ Emissions
12.9.1. Factors Affecting CO₂ Emissions Growth
12.9.2. Reducing Energy Intensity
12.9.3. Reducing Carbon Intensity
12.9.4. Reducing Non-CO₂ Emissions
12.9.5. Evaluating Emission Reduction Strategies
12.10. Future Outlook
12.10.1. The Kyoto Protocol
12.10.2. Beyond Kyoto
12.11. Conclusion
PART 4: TOPICS IN ENVIRONMENTAL POLICY ANALYSIS

13. ECONOMICS AND THE ENVIRONMENT

13.1. Introduction
13.2. Fundamentals of Engineering Economics
 13.2.1. Categories of Cost
 13.2.2. Cash Flow Diagrams
13.3. The Time Value of Money
 13.3.1. Present and Future Amounts
 13.3.2. Uniform Series Amounts
 13.3.3. Summary of Key Equations
13.4. Evaluating Total Life Cycle Cost
 13.4.1. Net Present Value
 13.4.2. Levelized Annual Cost
 13.4.3. Cost Per Unit of Product
 13.4.4. Average Cost-Effectiveness
13.5. Comparing Technology Options
 13.5.1. Comparisons Based on Net Present Value
 13.5.2. Comparisons Based on Levelized Annual Cost
 13.5.3. Comparisons Based on Payback Period
 13.5.4. Comparisons Based on Average Cost-Effectiveness
13.6. Marginal Cost Analysis
 13.6.1. Marginal Cost-Effectiveness
 13.6.2. Application to Market-Based Solutions
13.7. Choosing An Interest Rate
 13.7.1. Effect of Inflation
 13.7.2. Constant vs. Current Dollars
 13.7.3. Real vs. Nominal Interest Rates
 13.7.4. The Analysis Perspective
 13.7.5. Taxes and Depreciation
13.8. Cost-Benefit Analysis
 13.8.1. The Nature of Economic Benefits
 13.8.2. A General Cost Optimization Framework
 13.8.3. Limitations of Cost-Benefit Analysis
13.9. Conclusion
13.10. References
13.11. Problems

14. RISK ASSESSMENT AND DECISION ANALYSIS

14.1. Introduction
14.2. Defining Environmental Risks
14.3. How Safe is Safe?
14.4. Risk Assessment Methodology
 14.4.1. Hazard Assessment
 14.4.2. Dose-Response Assessment
 14.4.3. Exposure Assessment
 14.4.4. Risk Characterization
14.5. Assessing Risk for Carcinogens
 14.5.1. Chronic Daily Intake
 14.5.2. Potency Factor
 14.5.3. Incremental Risk
 14.5.4. Levels of Acceptable Risk
 14.5.5. Application to Contaminated Sites
14.6. Assessing Risk for Non-Carcinogens
14.6.1. Reference Dose
14.6.2. Hazard Quotient
14.7. Limitations of Risk Assessments
 14.7.1. Sources of Uncertainty
 14.7.2. Dealing with Uncertainty
14.8. Approaches to Risk Management
 14.8.1. Defining Goals and Procedures
 14.8.2. Finding Workable Solutions
14.9. Introduction to Decision Analysis
14.10. Influence Diagrams
 14.10.1. Symbols and Conventions
 14.10.2. An Environmental Example
 14.10.3. Further Applications
14.11. Decision Trees
 14.11.1. Building a Decision Tree
 14.11.2. Solving A Decision Tree
 14.11.3. Adding Complexity
14.12. Conclusion
14.13. References

15. ENVIRONMENTAL FORECASTING
15.1. Introduction
15.2. Framing the Question
 15.2.1. Environmental Attributes of Concern
 15.2.2. Forecasts vs. Scenarios
 15.2.3. Time Period of Concern
 15.2.4. Spatial Scale of Concern
15.3. Modeling the Future
 15.3.1. Drivers of Environmental Change
 15.3.2. Modeling Environmental Processes
15.4. Population Growth Models
 15.4.1. Annual Growth Rate Model
 15.4.2. Exponential Growth Model
 15.4.3. Logistic Growth Model
 15.4.4. Demographic Models
15.5. Economic Growth Models
 15.5.1. Activity Coefficients
 15.5.2. Economic Growth and Energy Use
 15.5.3. Input-Output Models
 15.5.4. Macroeconomic Models
15.6. Technological Change
 15.6.1. Types of Technology Change
 15.6.2. Scenarios of Alternative Technologies
 15.6.3. Rates of Technology Adoption
 15.6.4. Rates of Technology Innovation
15.7 Conclusion
15.8. References
15.9. Problems