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Abstract 

Uncertainty analysis is a key element of sound techno-economic analysis (TEA) of CO2 capture and storage (CCS) 

technologies and systems, and in the communication of TEA results. Many CCS technologies are novel concepts, that 

are still in the early (pre-commercial) stages of development. Therefore, uncertainties in their technology performance 

and cost are often substantial, making it imperative that they be characterized, and their impacts reported. Although 

uncertainty analysis itself is not novel, with some methods already frequently used by the CCS TEA community, a 

document that provides a comprehensive overview of methods and approaches, as well as guidance on their selection 

and use, is still lacking. Given its importance, we seek to fill this gap by providing a critical review of uncertainty 

analysis methods along with guidance on the selection and use of these methods for CCS TEAs, highlighting good 

practice and examples from the CCS literature. There are many opportunities to bring the use of uncertainty analysis 

to a higher level than currently practiced. This review of and guidance on available methods is intended to help 

accelerate continued methods development and their application to more robust and meaningful CCS performance 

and cost studies. 
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1. Introduction 

     While a number of large-scale CCS (CO2 capture and storage) facilities have successfully been built and entered 

into operation at industrial facilities and (to a lesser extent) power plants, CCS remains an effective but relatively 

expensive technology for mitigating greenhouse gas emissions. This has spurred extensive research and development 

(R&D) efforts to reduce the cost of CCS, especially the cost of CO2 capture. As a result, many CO2 capture 

technologies are still in an early stage of development for both the power and industrial sectors. Accordingly, there 

are large uncertainties in estimates of their future technical and cost performance. This makes reaching informed 

decisions on technology policy, R&D funding, and investment strategies more difficult due to the lack of transparency 

on what the uncertainties are and their significance for the outcomes of interest. Thorough uncertainty analysis should 

therefore be included in any techno-economic study on CCS technology, especially in the case of emerging 

technologies that currently lack commercial deployment and experience.  

     Frequently, uncertainty analysis is used only to assess the impact of a limited number of parameters (such as 

financial/economic indicators), often through single parameter sensitivity analyses. In such cases, however, multi-

parameter or global methods would be more justified and provide a deeper understanding of the impact of performance 

and cost uncertainties. Furthermore, newly developed methods that have proven to be helpful are yet to be adopted as 

common practice. Therefore, an international group of leading institutions in CCS techno-economic analysis set out 

to develop guidelines on improved uncertainty analysis for CCS costing studies. In this work, we will present these 

guidelines. The aim of this effort is threefold: first, to raise awareness of uncertainty analysis and available techniques 

for CCS techno-economic studies; second, to provide guidance on the sound use of specific methods and approaches; 

and third, to increase the use of these uncertainty analysis methods,. A full, open access, journal paper has been 

published in 2020, reporting on these aims [1]. 

     This work is part of a larger effort among leading institutions in CCS cost evaluations being carried out under the 

auspices of the IEAGHG CCS Cost Network. Building on an earlier white paper and cost guidelines developed by 

researchers active in this network [2], our collaborative effort is aimed at drafting a complementary set of CCS costing 

guidelines for three new topics: (1) one looking into methods for carrying out costing of novel (low Technology 

Readiness Level) technologies; (2) improved guidelines for cost evaluation of CCS from industrial applications; and, 

(3) quality assurance and uncertainty evaluations of data and models used in CCS cost analysis (the focus of this 

paper). Each of these three efforts has resulted in open access journal publications [1], [3], [4] and will be published 

as a common report under the auspices of the participating institutions. 

2. Short summary of the uncertainty guidelines 

     The uncertainty guidelines paper outlines the landscape of techno-economic modelling studies (simplified, 

rigorous/detailed, and in-between) and discusses the different purposes of uncertainty analysis (answering “what will” 

or “what if” kind of questions [3], model testing, or factor prioritization [5]). It continues to describe existing 

uncertainty analysis methods: from local (one-at-a-time to N-ways sensitivity analysis [6]) to global (e.g. using Monte 

Carlo simulation [7]) and provides examples of these from the CCS literature. These methods are described following 

a what, how, and when structure, providing guidance on the use of such methods and when they should (and should 

not) be used. The guidelines then review newly developed methods such as pedigree analysis [8] (Table 1), the pseudo-

statistical approach [9], and the use of surrogate models for global uncertainty analysis of complex integrated techno-

economic models that are too computationally intensive to use directly. These discussions led to a guidance matrix 

and decision scheme for selecting uncertainty analysis methods and approaches for specific purposes, model type, and 

level of technology development (reflected by the Technology Readiness Level scale). These guidelines will also help 

researchers and technology developers to critically analyze the techno-economic performance of the CCS technology 

under consideration. 

     Opportunities that can be achieved through advanced use of uncertainty analyses, such as design of experiments 

for CCS pilots (Figure 1) or design of CCS chains under uncertainty, are also discussed. Finally, the publication 

addresses the lack of uncertainty analysis options in widely used commercial process modelling software and discusses 

other software tools for undertaking uncertainty analysis. 
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Table 1. Example of a pedigree matrix used in the EDDiCCUT project to qualitatively assess the strength of 

data input for cost assessment [10]. 

SCORE Proxy Reliability of source 
Completeness (only 

for equipment list) 

Completeness (all other 

parameters) 
Validation process 

4 

A direct measure 

of the desired 

quality 

Measured/official 

industrial, vendor, 

and/or supplier data 

Representative data for 
all line items 

(processes, 

instruments, electro, 
civil, mechanical, etc.) 

Complete data from a large 

number of samples over a 

representative period 

Compared with 

independent data 
from similar systems 

that have been built 

3 
Good fit to 

measure 

Qualified estimate by 
industrial expert 

supported by industry 

data 

Representative data for 

all process equipment 

(equipment list, heat 
and mass balance, 

PFD) 

Complete data from a large 

number of samples but for 
unrepresentative periods or 

from representative periods 

but for a small number of 
samples 

Compared with 
independent data of 

similar systems that 

have not been built 

2 

Correlated but 

does not measure 

the same thing 

Reviewed data 

derived from 
independent open 

literature 

Representative data for 
most important process 

equipment (equipment 

list, heat and mass 
balance, PFD) 

Almost complete data but 

from a small number of 
samples or for 

unrepresentative periods or 

incomplete data from 
adequate number of samples 

and periods 

Validation 
measurements are not 

independent, include 

proxy variables or 
have a limited domain 

1 

Weak correlation 

but 
commonalities in 

measure 

Non-reviewed data 
from open literature 

Data from an adequate 

number of process 
parameters eat and 

mass balance, PFD) 

Almost complete data but 

from a small number of 
samples and unrepresentative 

periods 

Weak and indirect 
validation 

0 

Not correlated 
and not clearly 

related 

Non-qualified 
estimate or unknown 

origin 

Only high level or 
incomplete data 

available 

Incomplete data from a small 
number of samples for an 

unrepresentative period 

No validation 

performed  

Proxy: refers to how good or close a measure of the quantity that is modelled is to the actual quantity one wants to score. Reliability of source: 

evaluates the origin of the collected data. Completeness: this criterion assesses the coverage of the data, taking into account the information 

reported for process inputs, outputs, and associated stressors. It considers not only the amount but also the specific relevance of the presented 

data. Validation: refers to the degree to which data and assumptions used to produce the numeral of the parameter has been cross-checked 

against independent sources. 

3. Key messages 

• Proper use of uncertainty analysis in the performance of CCS TEAs can provide policy analysts, decision-

makers and others with a more robust understanding of the actual or expected technical and cost performance 

of CCS technologies, especially novel and emerging technologies that are not yet commercial. 

• The key to starting any uncertainty analysis is to first thoroughly define its purpose, and then to ensure that 

the most suitable type of uncertainty analysis for that purpose is selected. The choice strongly depends on 

the existing knowledge of the investigated technology and the associated TEA model and its inputs. 

• Although so-called one-at-a-time sensitivity analysis is most often applied, this method is quite limited. A 

better practice is to use probabilistic uncertainty analysis if probability can be quantified, or one-way or N-

ways sensitivity analysis if probability cannot be credibly quantified. The latter is best suited to answer 

prognostic questions, but its utility depends on whether credible probability density functions can be assigned 

to input parameters. 

• Ideally, quantitative uncertainty analysis is complemented with qualitative uncertainty methods to provide 

insights into the kinds of uncertainty that are unquantifiable, but relevant to policy and decision making. 

Indeed, much uncertainty in novel technology assessment resides in areas that are not quantifiable. Methods 

to characterize such uncertainties thus provide a more complete impression of the reliability, quality, and 

robustness of models and their results. 

• Further expanding the capabilities of commercial and other process simulation software to include advanced 

global uncertainty approaches would be very helpful. There exist open-source, comprehensive, advanced 

uncertainty analysis toolboxes, but these require some skill in programming, perhaps providing a barrier for 

some TEA practitioners. Therefore, further improvement of the user-friendliness of these toolboxes (e.g., by 

including graphic user interfaces) would aid in the further adoption of advanced uncertainty analysis 
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methods.  

• Finally, the importance of transparent communication on the methods used, the results and their interpretation 

should not be underestimated. Uncertainty analysis should support decision-making and therefore additional 

efforts to guide users to properly interpret the information provided are often needed.   

 

 

Figure 1. Schematic of Bayesian Sequential Design of Experiments implemented for pilot plant campaigns, as 

developed in Carbon Capture Simulation for Industry Impact (CCSI2). Adapted from [11]. 
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