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HIGHLIGHTS

e We review models explaining the cost of 11 electricity supply technologies.

e The most prevalent model is a log-linear equation characterized by a learning rate.
e Reported learning rates for each technology vary considerably across studies.

e More detailed models are limited by data requirements and verification.

e Policy-relevant influences of learning curve uncertainties require systematic study.

ARTICLE INFO ABSTRACT

Article history: A variety of mathematical models have been proposed to characterize and quantify the dependency of
Received 16 January 2015 electricity supply technology costs on various drivers of technological change. The most prevalent model
Received in revised form form, called a learning curve, or experience curve, is a log-linear equation relating the unit cost of a
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technology to its cumulative installed capacity or electricity generated. This one-factor model is also the
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most common method used to represent endogenous technical change in large-scale energy-economic
models that inform energy planning and policy analysis. A characteristic parameter is the “learning rate,”
KeyW?r ds: defined as the fractional reduction in cost for each doubling of cumulative production or capacity. In this
Learning curves paper, a literature review of the learning rates reported for 11 power generation technologies employing
E:f:rf;relgctfycg;\i,r?; an array of fossil fuels, nuclear, and renewable energy sources is presented. The review also includes
Learning rates multi-factor models proposed for some energy technologies, especially two-factor models relating cost to
Electricity generating technologies cumulative expenditures for research and development (R&D) as well as the cumulative installed ca-

pacity or electricity production of a technology. For all technologies studied, we found substantial
variability (as much as an order of magnitude) in reported learning rates across different studies. Such
variability is not readily explained by systematic differences in the time intervals, geographic regions,
choice of independent variable, or other parameters of each study. This uncertainty in learning rates,
together with other limitations of current learning curve formulations, suggests the need for much more
careful and systematic examination of the influence of how different factors and assumptions affect
policy-relevant outcomes related to the future choice and cost of electricity supply and other energy

technologies.
© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding how the costs of energy and energy supply
technologies change over time is of key importance for analysts
and decision-makers concerned with technology development,
the evolution of national and global energy systems, and the im-
plications of policy measures proposed to address global climate
change or other energy-related issues. Over the past several dec-
ades, the concept of a learning curve (or experience curve) has
been employed in the literature to relate historically observed
decreases in the cost of a technology to key factors affecting its
adoption and diffusion, such as its cumulative installed capacity or
units of output produced. Technology “learning rates” derived
from such models are now widely employed by researchers and
policy analysts to project future trends in the energy and en-
vironmental domains.

In this paper, we focus specifically on technologies for electric
power generation, as this sector accounts for a major portion of
primary energy consumption and greenhouse gas (GHG) emis-
sions globally (IEA, 2013a). We present the results of a literature
review of models that characterize technology learning across a
broad range of electric power generation options, including, pul-
verized coal (PC) plants with and without carbon capture and
sequestration (CCS); integrated gasification combined cycle (IGCC)
plants with and without CCS; natural gas combined cycle (NGCC)
plants with and without CCS; natural gas-fired combustion tur-
bines; dedicated biomass plants; nuclear plants; hydroelectric
plants; geothermal plants; onshore and offshore wind farms; and
solar photovoltaic (PV) power plants.

This paper builds upon and updates prior reviews of the
learning curve literature in peer-reviewed journal articles (e.g.,
McDonald and Schrattenholzer, 2001; Yeh and Rubin, 2012) and an
edited monograph focused on the energy sector with an extensive
treatment of electric power technologies and energy models
(Junginger et al., 2010). In extending this prior body of work, we
pull together into a single journal-length article the findings of
research about learning models for a broad set of energy tech-
nologies currently reported in a variety of sources. Thus, our main
objectives are to (1) review the current state of models used to
understand past cost trends for a broad range of electric power
generation technologies, (2) summarize and compare the quanti-
tative learning rates for different technologies, and their associated
uncertainty, as reported in the recent literature, (3) draw im-
plications of these findings for the use of learning curves in
technology studies and large-scale energy-economic models,
(4) critically assess the implications of using various types of
learning models for energy policy analysis and (5) suggest a
number of areas where additional research could be productive in

addressing some of the limitations identified in this review.

To begin, Section 2 briefly reviews the theory of technological
change and the principal model forms used to relate technology
costs to relevant factors. Section 3 then presents the results of our
literature review of learning rates applicable to the 11 electricity
supply technologies studied including estimates of their un-
certainties. This review focused on peer-reviewed journal articles
to help assure that the results we cite have been subject to a prior
degree of expert scrutiny and approval. Section 4 discusses the
policy implications of using learning curves or other specifications
of future technology costs in large-scale energy-economic models
used to inform policy planning and analysis. Finally, Section 5
summarizes the above discussions and identifies key research
needs to address major shortcomings identified in our literature
review.

2. Theoretical framework

A large literature on the theory of technological change and its
applications to energy system modeling underlies the discussion
of learning rates in this paper. Here we briefly review highlights of
that literature, including relevant aspects of our own past work,
before focusing more narrowly on the models most widely used to
estimate future technology costs.

Technology growth models originally treated technical change
exogenously, independent of other factors or variables (Solow,
1956). This effectively meant that technological change is largely
unresponsive to policy measures such as R&D spending, contrary
to other evidence (Cohen, 1995; Sinclair et al., 2000; Clarke et al.,
2008). An alternative formulation proposed by Romer (1986)
modeled technological change endogenously as a function of se-
lected variables—a formulation now adopted in much of the
technological change literature. Endogenous change models also
seek to understand the importance of cost reductions for tech-
nologies used in one industry, sector, or geographic region for the
same or similar technology used in other sectors or regions, that is,
understanding “spillover” effects. In all cases, however, there is
still considerable uncertainty in the ability of different model
formulations to represent induced technological change (Jungin-
ger et al., 2010; Yeh and Rubin, 2012).

Despite this complexity, by far the most common model used
in the energy literature to forecast changes in technology cost is
the “one-factor learning curve” (or “experience curve”). This
widely-used formulation is derived from empirical observations
across a variety of energy technologies that frequently indicate a
log-linear relationship between the unit cost of the technology
and its cumulative output (production) or installed capacity
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(McDonald and Schrattenholzer, 2001). In its simplest form this
model can be expressed as

Y = ax’ M

where Y is the unit cost of the technology and x represents cu-
mulative experience. For power generation technologies the latter
term is commonly quantified as cumulative installed capacity
(MW) or (in some cases) cumulative energy produced (MWh). The
constants a and b in Eq. (1) represent the unit cost of the first unit
and the rate of cost reduction, respectively (Arrow, 1962). The
fractional reduction in cost associated with a doubling of experi-
ence is referred to as the learning rate (LR) and is given by

LR = 1-2b )

The factor 2° in the above equation is the “progress ratio,” a
parameter also commonly reported in the literature, indicating the
fractional cost reduction after a doubling of cumulative capacity
(or production). Eq. (1) is often transformed to a log-linear equa-
tion in which b is the slope of a line on a log-log scale (Yeh and
Rubin, 2012):

log Y = a + b(log x) 3)

The original derivation of this model reflected the phenomenon
called “learning by doing” (LBD) observed in manufacturing
(Wright, 1936). When extended to a class of technologies, such as
different types of power plants, the concept reflects overall ex-
perience and the independent variable, x, becomes a surrogate for
all of the factors that affect the cost trajectory of a technology.
Despite the observed statistical correlation, however, it is im-
portant to note that the relationship between unit cost reduction
and cumulative experience does not necessarily indicate a causal
relationship. Thus, as other studies have noted, the underlying
factors and processes of technological change requires careful
examination using other approaches (Clarke et al., 2006; Gilling-
ham et al., 2008; Ferioli et al., 2009; Nordhaus, 2009).

While there has been progress in this regard over the past few
decades, our understanding of the underlying factors that con-
tribute to technological change and cost reductions remains lim-
ited. Explanations for observed cost reductions with increasing
cumulative experience generally can be grouped into three cate-
gories (Yeh and Rubin, 2012). The first attributes lower costs to
improvements or changes in the production process, including
technical innovations, gains in worker productivity as they become
more familiar with process equipment, improvements in overall
management, and economies of scale. The second attributes cost
reductions to changes in the product itself (including innovations,
re-design and standardization of the technology), while a third
attributes cost reductions to changes in input prices for materials
and labor. These three categories are not mutually exclusive and
often occur simultaneously (to different degrees in different si-
tuations). Furthermore, some or all of these factors may in turn be
driven by other factors such as changes in market demand or
policy initiatives (including public R&D spending, technology
standards, and technology incentives).

Although intuitively satisfying, for the most part the above
explanations provide only qualitative arguments, with little
quantitative insight into how, and by how much, various factors
contribute to observed cost reductions. While certain factors, such
as technology scaling laws, are more readily amenable to quanti-
tative insights, teasing out and quantifying the effects of other
factors remains challenging and a major focus of research.

Toward that end, a variety of multi-factor learning models have
been developed. Yeh and Rubin (2012) note that such models
“explicitly incorporate parameters such as R&D spending (Cohen
and Klepper, 1996; Clarke et al., 2006; Jamasb, 2007), knowledge

spillovers (Clarke et al., 2006), increased capital investments (Co-
hen, 1995; Klepper and Simons, 2000), economies-of-scale (Sin-
clair et al., 2000; Nemet, 2006; Yeh and Rubin, 2007), changes in
input prices (Joskow and Rose, 1985; Nemet, 2006; Soderholm and
Sundqvist, 2007), labor costs (Joskow and Rose, 1985), efficiency
improvements (Joskow and Rose, 1985; Nemet, 2006), and other
public policies (Soderholm and Klaassen, 2007; Soderholm and
Sundqvist, 2007).” As expected, studies employing multi-factor
models find lower rates for pure learning-by-doing compared to
the LBD rate in studies using one-factor models. While such
models provide a more detailed account of the factors that affect
the cost of a particular technology, they are not as prevalent in the
literature as the one-factor model shown earlier, owing in large
part to data requirements and limitations.

The most prevalent multi-factor model for energy technologies
is a “two-factor learning curve” where the key drivers of cost re-
duction are assumed to be the cumulative expenditure for R&D as
well as the cumulative installed capacity or production of the
technology (Jamasb, 2007). Eq. (3) can be expanded to explicitly
include the effect of cumulative R&D expenditures:

log Y = a + bpg(log x) + by, (log R) )

where by, is the learning-by-doing parameter, by, is the learning-
by-researching (LBR) parameter, R is the cumulative R&D invest-
ment or knowledge stock, « is the specific cost at unit cumulative
capacity and unit knowledge stock, and Y and x have the same
definitions as in Eq. (1) (Yeh and Rubin, 2012).

Empirical tests of this two-factor formulation find that R&D
contributes significantly to cost reductions in all stages of tech-
nological development, often more so than learning by doing
(Watanabe, 1995; Kouvaritakis et al., 2000; Klaassen et al., 2005;
Jamasb, 2007; Séderholm and Klaassen, 2007; Séderholm and
Sundqvist, 2007). Jamasb (2007) also finds very little “elasticity of
substitution” between the two factors, indicating that they are not
readily interchangeable. Other studies also find significant corre-
lations between cumulative R&D expenditures (and/or R&D-based
knowledge stock) and subsequent (time-lagged) cost reductions
(Klaassen et al., 2005; Jamasb, 2007; Soderholm and Klaassen,
2007; Soderholm and Sundqvist, 2007). While it is also widely
accepted that both private as well as public R&D expenditures
should be included in this formulation, research on two-factor
models often includes public R&D spending only, as data on pri-
vate R&D expenditure are generally not publicly available or not
sufficiently disaggregated (Wiesenthal et al., 2012; NRC, 2010).
Other limitations of this approach are discussed later in Section 4.

Finally, “component-based learning curves” extend the one-
factor learning model to represent the total cost of a technology at
any point in time as the sum of individual component or sub-
system costs. Thus:

n
Y=Y axn
g 6)

where n is a specified technology component or sub-system, a,, is
the specific cost of cost component n at unit cumulative capacity,
and by, is the learning parameter for technology component n (Yeh
and Rubin, 2012).

A number of studies use the method from Eq. (5) to estimate
the future cost of technologies for which there is no direct his-
torical experience, such as power plants with carbon capture and
storage (Rubin et al., 2007) and micro-cogeneration of heat and
power (Weiss et al., 2010). In these cases, the overall plant is di-
vided into multiple components or sub-sections, such as the
power plant boiler, conventional air pollution control systems, and
carbon capture unit. The future cost of each plant component is
then estimated based on the historical learning rate for that
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component (where such data exist), or one that is technically si-
milar. The future cost of the overall plant is then estimated by
summing the costs of all plant components after a specified in-
crement of cumulative capacity.

The rationale for this component-based learning curve is that
because different components of a complex technology (like a
coal-fired power plant) are presently at different stages of ma-
turity, the cost of a newer component (like a carbon capture unit)
will decline more rapidly in response to an increment of new ca-
pacity compared to a more mature component with the same
learning rate but a much larger base of current installed capacity.
In addition, different components may have different learning
rates. In some applications of this approach, however, certain cost
components such as labor and raw materials, (which may remain
constant or increase in cost over time) are not included in the
component-based learning rate calculation, but may warrant se-
parate modeling efforts in some cases (Ferioli et al., 2009).

As noted earlier, while intuitively more satisfying, a major
barrier to the development of multi-factor models of technological
change is the lack of systematic data for validation and use. Thus,
the following section of this paper focuses on the one-factor and
two-factor learning models that are most prevalent in the peer-
reviewed literature.

3. Power plant learning rates
In this section we summarize the empirical learning rates that

have been reported for a broad spectrum of electric power gen-
eration technologies. We also summarize the projected learning

Table 1

rates estimated for two emerging technologies of interest (CCS and
IGCC) for which there is not yet a significant empirical dataset for
power plant applications.

Our literature review of learning rates for electric power gen-
eration technologies found that the preponderance of studies re-
port learning rates (or progress ratios) based on a one-factor log-
linear model (Eq. (2)) fit to empirical data for a particular region
and time period. A smaller number of studies employ a two-factor
model that includes both learning by doing and learning by re-
searching. Table 1 summarizes the range of learning rates reported
in these studies.

Table 1 shows that the largest numbers of learning rate studies
in the literature are for solar PV systems and onshore wind. These
two renewable energy technologies are the fastest-growing power
generation options worldwide (Sawin and Sverrisson, 2014) and
are of particular interest in studies of low-carbon energy systems.
Across all of the technologies, the range of learning rates reported
for each technology varies considerably, from a factor of two to
more than an order of magnitude. In several cases, the reported
range includes negative as well as positive values, indicating that
costs have risen as well as declined with increased deployment.
Thus, no single estimate of a technology learning rate can be
considered “robust.”

The following sections elaborate on the data in Table 1, be-
ginning with technologies that are currently most prevalent and
mature, namely, power plants using fossil fuels (coal and natural
gas), nuclear energy, and hydropower. Additional details on all of
the literature reviewed are documented in EPRI (2013a).

Range of reported one-factor and two-factor learning rates for electric power generation technologies.

Technology and en- No. of studies  No. of studies  One-factor models”

Two-factor models® Years covered

ergy source with one with two across all studies
factor® factors Range of Mean LR Range of Mean Range of Mean LBR
learning rates rates for LBD rate rates for rate
LBD LBR
Coal
PC 4 0 5.6-12% 8.3% - - - - 1902-2006
PC+CCs? 2 0 1.1-9.9%¢ - - - - Projections
1cec? 2 0 2.5-16% - - - - Projections
IGCC+CCs? 2 0 2.5-20%" - - - - Projections
Natural gas
NGCC 1 -11 to 34% 14% 0.7-2.2% 1.4% 2.4-17.7% 10% 1980-1998
Gas turbine 11 0 10-22% 15% - - - - 1958-1990
NGCC+CCS? 1 0 2-7% - - - - Projections
Nuclear 4 0 Negative to 6% - - - - - 1972-1996
Wind
Onshore 12 6 -11 to 32% 12% 3.1-13.1% 9.6% 10-26.8% 16.5% 1979-2010
Offshore 2 1 5-19% 12% 1% 1% 4.9% 4.9% 1985-2001
Solar PV 13 3 10-47% 23% 14-32% 18% 10-14.3% 12% 1959-2011
Biomass
Power generation® 2 0 0-24% 1% - - - - 1976-2005
Biomass production 3 0 20-45% 32% 1971-2006
Geothermal’ 0 0 - - - - - -
Hydroelectric 1 1 1.4% 1.4% 0.5-11.4% 6% 2.6-20.6% 11.6% 1980-2001

2 Some studies report multiple values based on different datasets, regions, or assumptions.

b | R=learning rate. Values in italics reflect model estimates, not empirical data.
¢ LBD=learning by doing; LBR=learning by researching.

4 No historical data for this technology. Values are projected learning rates based on different assumptions.

€ Includes combined heat and power (CHP) systems and biodigesters.

f Several studies reviewed presented data on cost reductions but did not report learning rates.
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3.1. Coal-based power plants

Power plants burning pulverized coal (PC) are the most pre-
valent technology for power generation worldwide. Over the
course of the last century, technological improvements in PC
boilers and other power plant components have achieved large
economies of scale—with associated cost reductions—as well as
significant improvements in power plant reliability, thermo-
dynamic efficiency, and reductions in environmental emissions.
The experience curve derived for plant construction cost from one
recent study implies an average learning rate of 12% between 1902
and 2006 (McNerney et al., 2011). An earlier study reported lower
rates of 7.6% for bituminous coal power plants and 8.6% for lignite
power plants for the period 1975-1993 (McDonald and Schrat-
tenholzer, 2001), similar to the range of 7-8% reported by Ostwald
and Reisdoft (1979) for the period 1957-1976.

In other studies, Joskow and Rose (1985) find that after the
1980s overall construction and generation costs for coal-fired
plants generally increased. These increases were attributed mainly
to new environmental and other regulatory requirements, as well
as to changes in power plant design standards and work rules.
Other factors adding to higher cost during this period included
increases in labor costs and construction time, as well as lower
construction productivity. Wang and Yu (1988) observe similar
trends. Neither study, however, presents cost results in terms of
technology learning curves or rates for an overall PC plant. Fur-
thermore, significant changes in plant design and complexity, such
as the addition of new environmental control equipment, not only
contributes to increased plant cost but also masks the learning
effect for basic plant components such as steam turbines or coal-
fired boilers.

To better analyze the effects of technology learning, Yeh and
Rubin (2007) decompose complex coal-based plants into major
components or sub-systems so as to disentangle cost increases due
to changing design requirements from cost decreases due to
learning. Using this framework, the authors find an overall learn-
ing rate of 5.6%for the construction cost of subcritical boilers (the
basic building block of a PC power plant) from 1942 to 1999.
During this period, there was nearly a 70% increase in the size of
individual PC boilers, accompanied by a jump from 30% to 38% in
overall power plant efficiency (on a higher heating value basis).
The same study finds a learning rate of 8% for non-fuel O&M costs
from 1929 to 1997 after adjusting for inflation (based on the GDP
price deflator), changes in real wages (for electric and gas industry
employees), and changes in plant utilization rates (annual average
capacity factor).

In a related study, Rubin et al. (2007) use these and other
component-specific learning rates to project the future learning
rate of an overall PC power plant based on U.S. designs for new
supercritical plants. Based on 100 GW of new capacity worldwide,
the authors find the learning rate for overall plant construction
cost to be 1.1-3.5%. Because most plant components are already
mature and widely deployed, the relatively small amount of in-
cremental capacity did not result in larger learning rates for the
overall plant.

That same study also estimates learning rates for power plants
with carbon capture and storage (CCS), which is of significant in-
terest as a climate change mitigation strategy (IPCC, 2014). How-
ever, since CCS technology has not yet been widely deployed on
power plants at full commercial scale, there is currently no his-
torical experience or empirical data as the basis for a learning
curve. Rubin et al. (2007) argue that current commercial systems
for post-combustion capture of CO, are technically analogous to
post-combustion systems for SO, capture (known as flue gas de-
sulfurization systems, or FGD), which had average learning rates of
12% for capital costs and 22% for O&M costs, according to previous

studies. Again using the component-based learning curve (Eq. (5)),
the study derives composite (plant-level) learning rates from 1% to
4% for capital cost and from 2% to 5% for cost of electricity based on
100 GW of new plant capacity with CCS. Using a similar approach,
Li et al. (2012) project the learning rate of PC plants with CCS in
China to range from 5.7% to 9.9%.

The same approach is also applied to another coal-based power
generation technology of interest, the integrated coal-gasification
combined cycle (IGCC) plant. Because there are only a few IGCC
power plants in operation worldwide (built mainly as demon-
stration projects) there is again a lack of direct empirical data for a
historical learning curve. Nonetheless, there is considerable in-
terest in the future cost trajectory of IGCC-CCS plants as an al-
ternative to PC plants with CCS. Existing studies thus use the
“bottom-up” component modeling approach outlined above to
estimate the learning rates of future IGCC plants with and without
CCS. Table 1 shows the range of results from studies by Rubin et al.
(2007) and Li et al. (2012) (the latter study based on estimates for
power plants in China). Van den Broek et al. (2009) also use a
bottom-up approach to estimate future learning rates of capital
and O&M cost for components of future PC and IGCC plants with
CCS, but do not report composite results for an overall plant.

3.2. Natural gas-fired power plants

Natural gas has been used as a fuel for power generation since
the 1940s, mainly in simple cycle gas turbines that operate only a
few hours a day during periods of peak demand. The first natural
gas combined cycle (NGCC) plants were built in the 1970s, pro-
viding more efficient power generation technology. However, their
introduction was severely limited by relatively high natural gas
prices and equipment costs that made them uneconomical for
baseload power generation. Later, in the 1990s and early 2000s,
construction of NGCC plants (also known in the literature as gas
turbine combined cycle plants, GTCC) boomed in the U.S. following
sharp declines in both natural gas prices and the capital cost of
combined cycle power plants.

Most studies on learning for natural gas power plants use
single factor models (Colpier and Cornland, 2002; McDonald and
Schrattenholzer, 2001; Priddle, 2000). Fig. 1 shows the resulting
learning rates reported in different studies, along with the time
period and geographic region used to derive the learning curve.
Differences in these factors lead to significant variability in
learning rates reported by different sources. Fig. 1(a) and (b) shows
results for capital cost reduction of simple natural gas-fired com-
bustion turbines and combined cycle plants, respectively. These
include a negative learning rate for NGCC capital costs reported by
Kouvaritakis et al. (2000) based on data for 1981-1991 (possibly
caused by oligopolistic behavior during this period, according to
the study). Colpier and Cornland (2002) also report learning rates
based on electricity production cost ($/kWh) rather than capital
costs. Since the latter is highly dependent on the price of natural
gas two values are reported: one based on the actual natural gas
price for each year and one based on a constant natural gas price.
The difference in the resulting learning rate (15% versus 6%) is seen
in Fig. 1(c). Fig. 2 provides a histogram summarizing the range of
values reported in Fig. 1.

CCS technology is also of interest for reducing emissions of
carbon dioxide from NGCC power plants (IPCC, 2014). As with
coal-based plants, in the absence of historical experience and data,
van den Broek et al. (2009) estimate future learning rates for NGCC
plants with CCS using the component-based modeling approach
developed by Rubin et al. (2007). The resulting learning rates
range from 2% to 7%, with a nominal value of 5%.

Only one paper reviewed uses a two-factor model that in-
corporates a learning-by-researching factor for NGCC costs. Jamasb
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Fig. 1. Summary of learning rates for natural gas-fired power plants reported in the literature: (a) simple gas turbines; (b) NGCC/GTCC based on $/kW and (c) NGCC/GTCC
based on $/kWh.

and Kohler (2007) evaluate global data for combined cycle gas
turbines built in two periods. For the period 1980-1989, they find
learning by doing and learning by researching rates of 0.65% and
17.7%, respectively. For the period 1990-1998, the learning by
doing rate increases to 2.2% while the learning by researching rate
falls to 2.4%. The difference in these values is attributed to changes
in the maturity of the technology: NGCC plants are considered a
“reviving technology” in the first period, but a “mature technol-
ogy” after 1990. The authors suggest that this change can be

partially attributed to the de-regulation of electricity markets
(Jamasb and Kéhler, 2007).

3.3. Nuclear power plants

In contrast to other power generation technologies, historical
costs for nuclear power plants frequently show increasing rather
than decreasing trends with cumulative installed capacity. Fig. 3,
for example, shows the capital cost trends from a recent study of
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Fig. 2. Histogram of learning rates reported in the literature for natural gas-fired power plants. Black bars are studies based on cost per unit of capacity installed ($/kW). Grey
bars are studies where the dependent variable is the cost per unit of electricity generation ($/kWh).
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Fig. 3. Reactor construction costs per KW as a function of cumulative installed
capacity for both the French (triangle markers, using scale on right) and U.S.
(rectangle markers, using scale on left) cases and currency. Figure reprinted from
Grubler (2010) with permission from Elsevier.

the French and American nuclear experience. In both cases, Gru-
bler (2010) finds that specific costs increase with installed capa-
city. Application of Eq. (2) to the data in Fig. 3 would imply a
negative learning rate of about -38% for U.S. plants from 1972 to
1996. However, Grubler (2010) notes that many factors associated
with nuclear plant construction costs, ranging from new safety
regulations to generational differences in nuclear reactor designs,
complicate the interpretation of these data from the viewpoint of
technological learning. Thus, he argues that these cost trends
should not be translated into learning rates, stating that:

“.... the learning curve metaphor is clearly not applicable in the
case of nuclear in both the US and France illustrating the limits
of simplistic learning curve assumptions in technology studies
and policy models, the model nonetheless allows an additional
insight. The rhythm (as opposed to the different rates and ex-
tent) of cost escalation between the two countries appears
strikingly similar. Initially, cost escalations are positive, but
modest until a threshold value of some 20 GW installed capa-
city is reached, followed by a phase of accelerated cost esca-
lation to another threshold level at some 40-50 GW beyond
which cost escalation simply skyrockets. At this stage above
observation remains entirely conjectural.” (Grubler, 2010)

In other studies, Cooper (2010) also finds an increase in the unit
cost of U.S. nuclear power plants with increasing cumulative in-
stalled capacity based on his own dataset. In contrast, an earlier
literature review by McDonald and Schrattenholzer (2001) reports
a positive learning rate of 5.8% for nuclear power plant construc-
tion cost in OECD countries from 1975 to 1993 based on a study by
Kouvaritakis et al. (2000). In terms of operating experience, Sturm
(1994) compares operating nuclear plants in OECD countries and
Eastern European countries using the proxies of availability and
unplanned outages. He finds positive learning in the OECD but
negative learning in Eastern Europe, in part due to exogenous
shocks such as the breakup of the Soviet Union.

Overall, the mixed results on historical learning for nuclear
plants have called into question the benefits of learning claimed
for proposed evolutionary and advanced nuclear designs such as
small modular reactors (SMRs). These include promised cost re-
ductions from factory fabrication, modular construction, and var-
ious other factors (see for instance, Carelli et al. (2010), van den
Broek et al. (2009), Abdulla et al. (2013)).

3.4. Hydroelectric plants

Hydropower is a key source of electricity in many parts of the
world. In the U.S. and other developed countries, however, prior
construction of hydro plants has left little or no opportunity for
additional capacity. Thus, most hydroelectric expansion is taking
place in developing countries, especially in Asia and Latin America
(Edenhofer et al., 2011; Sawin and Sverrisson, 2014).

Kouvaritakis et al. (2000) report a single-factor learning curve
for hydroelectric projects based on data for OECD countries from
1975 to 1990. Their capital cost learning rate of 1.4% is cited in later
studies by McDonald and Schrattenholzer (2001) and Kahouli-
Brahmi (2008). Another study by Jamasb (2007) employs two-
factor learning curves for large and small hydroelectric plants.
Using global data from 1980 to 2001, he reports a learning-by-
doing rate of 1.96% and a learning-by-researching rate of 2.63% for
large hydropower projects. He also reports learning by doing and
learning by researching rates of 0.48% and 20.6%, respectively, for
small hydropower projects based on global data from 1988 to
2001.

3.5. Wind power plants

Among the non-hydro renewable energy sources for power
generation, wind farms are the fastest-growing source of electricity
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in much of the world today (Sawin and Sverrisson, 2014). Large-
scale deployment of land-based wind turbines in Europe and the U.
S. began in the 1970s and early 1980s, and has continued to grow
worldwide. Wind power technology has evolved considerably over
this period: in the 1980s the most prevalent turbine size was 55 kW
(McDonald and Schrattenholzer, 2001), while by 2013 the average
size of land-based turbines had grown to roughly 2 MW, with 10%
of installed turbines larger than 2.5 MW (IEA, 2014; Wiser and
Bolinger, 2014). This trend of increasing size is expected to continue
(Sawin and Sverrisson, 2014). More recently, offshore wind farms
also have been deployed in northern Europe, also with projections
for continued growth. Here, we first review the recent literature on
experience curves and learning rates for onshore wind systems (the
dominant application), then discuss learning for offshore wind.

3.5.1. Results for onshore systems

Most reported learning rates for wind systems employ one-
factor learning curves for unit capital cost ($/kW) based on cu-
mulative installed capacity. Some of these studies use the term
“price” or “investment cost” rather than capital cost. Unless de-
fined otherwise, in this paper we interpret all these terms to mean
the amount paid by an owner or operator of the technology, which
is the data most commonly available. A smaller number of studies
report learning rates for generation cost ($/kWh) as a function of
cumulative electricity generated. Most studies focus on Europe
and North America, although the specific geographic areas and
time periods analyzed in different studies vary widely. While most
authors report a single learning rate for an overall time period,
some divide the data into separate intervals with different learn-
ing rates. Differences are also found in the model specifications
used in different studies. For example, roughly half of the studies
reviewed report learning rates for individual wind turbines, while
the other half report rates for entire wind farms.

Figs. 4-6 group the results of different studies by geographic
region and dependent variable used, along with the basis for the
cost estimates. Fig. 7 summarizes the same data in the form of a
histogram of all learning rates reported in the studies reviewed.
Table A1 in Appendix A includes a description of the assumptions
of each study used to build Figs. 4-7.

Overall rates span a very large range, from -11% to 35%
(Edenhofer et al., 2011; Ibenholt, 2002; Junginger et al., 2005;
Kahouli-Brahmi, 2008; Lindman and Séderholm, 2012; McDonald

and Schrattenholzer, 2001; Neij, 2008; Neij et al.,, 2003; Nemet,
2009; Priddle, 2000; Qiu and Anadon, 2012; Trappey et al., 2013;
Weiss et al., 2010). More pronounced is the roughly six-fold range
of learning rates reported for capital costs in Europe (Fig. 4), the
four-fold range for learning rates globally (Fig. 5), and the nearly
four-fold range of cost-of-electricity (COE) reduction rates re-
ported for Europe, the U.S. and China over the past two to three
decades. However, among the latter studies, except for the dis-
cussion in Ibenholt (2002), it is unclear whether temporal and
spatial variations in capacity factor are included in the learning
rates reported.

Overall, we find that it is not possible to clearly explain, in
general terms, the large variations across these studies based on
the limited information and data reported in the literature. For
example, while Figs. 3 and 4 indicate that learning rates over
longer periods of time tend to be smaller than rates over shorter
time periods—as seen for other technologies discussed in the lit-
erature (e.g., Yeh and Rubin, 2012)—not all studies depicted in
those figures support that conclusion. Differences in geographic
regions and myriad other factors that differ across studies further
preclude generalizations for one-factor learning models of onshore
wind systems.

Other studies of onshore wind systems present more detailed
multi-factor models for system costs. For example, Junginger et al.
(2005) describe historical factors affecting wind turbine cost, in-
cluding increased labor specialization, labor efficiency, innovations
from R&D, product standardization, and product re-design. They
suggest the latter factor (especially increased turbine size) has
primarily driven recent cost reductions. An earlier approach em-
ployed by Ibenholt (2002) used least square regression to estimate
the learning parameter, b, in Eq. (1) as function of “support to R&D,
other technology-push policies, changes in input prices, competi-
tion in the market, [and] economies of scale.” That analysis (of
Denmark, Germany and the UK) used a variety of electricity prices
and tariffs paid by utilities in each country as a proxy for true
technology cost, and concluded that government policies to pro-
mote wind energy could have both positive and negative impacts
on cost reductions and technology diffusion.

Yet other studies developed two-factor learning-diffusion
models of the form shown by Eq. (3), yielding separate rates for
learning by doing and learning by researching (Miketa and
Schrattenholzer, 2004; Klaassen et al., 2005; Jamasb and Ké&hler,
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Fig. 4. Learning rates for on-shore wind from European studies. The dependent variable is cost/price per unit of installed capacity ($/kW). There are multiple lines per study
where authors used different model specifications. Solid lines denote studies that modeled wind farm costs, while dashed lines denote studies that modeled only turbine

costs. Different markers (and colors) denote the different studies.
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2007; Séderholm and Klaassen, 2007; Ek and Séderholm, 2010).
Those results are summarized in Table 1, with further details in
Table A2 of Appendix A.

Finally, we note that in recent years there have been few new
learning rate studies of onshore wind in the peer-reviewed lit-
erature, perhaps related to changing trends in cost. After several
decades of declining prices, starting around 2002 the specific ca-
pital cost of wind farm installations in Europe and the U.S. began
to rise rather than fall with increasing cumulative capacity—a
trend that persisted until about 2008, when unit costs again began
to fall (Lantz et al., 2012; IEA, 2013b; Wiser and Bolinger, 2014).
The increasing costs for wind systems mirrored the higher costs
for most types of power plants seen during a period of high global
demand for commodities like steel and concrete, which drove up
plant construction costs (CEM, 2014; IHS-ERA, 2014), followed by a
period of price stabilization and decline during a worldwide eco-
nomic downturn. These recent perturbations are not reflected in
the learning rate data summarized in this paper.

3.5.2. Results for offshore systems

With regard to offshore wind farms, experience to date has
been limited to Europe, particularly the Scandinavian countries.
Globally, offshore wind capacity has grown from roughly 14 GW in
1999 to 197 GW in 2010 (Clarke et al., 2006; Jamasb, 2007; Moccia
and Arapogianni, 2011; Nordhaus, 2009). Lemming et al. (2009)
studied the potential for development of offshore wind power
through the year 2050. The authors assume that the learning rate
of 10% observed between 1985 and 2000 remains constant until
2030, after which it decreases to 5% (Lemming et al., 2009).

Jamasb (2007) and Junginger et al. (2009) produce more de-
tailed analyses based on the cost of specific components of an
offshore wind farm. They suggest that the learning rate of offshore
wind turbine capital cost will be between 8% and 19%, similar to
the learning rates observed for land-based wind turbines. For the
balance-of-plant cost, Junginger et al. (2009) estimate a 38%
learning rate for the installation cost of the interconnection cables
based on data for underwater high voltage direct current (HVDC)
cables between 1988 and 2000. Similarly, they estimate a 29%
learning rate for HVDC converter stations. Finally, they evaluate
the installation time for two offshore wind turbines projects built
in 2000 and 2003. Using these data as a proxy for cost, they
suggest a learning rate of 23% for the erection cost of offshore

wind turbines (Junginger et al., 2009).

Finally, Jamasb (2007) also developed a two-factor learning
model for offshore wind farms. Using data from OECD countries
from 1994 to 2001, he finds a learning-by-doing rate of 1%, and a
learning-by-researching rate of 4.9%.

3.6. Solar photovoltaics

Solar photovoltaic (PV) systems convert sunlight directly into
electricity using either wafer-type cells cut from a silicon ingot, or
thin-film cells deposited onto a substrate-like glass, plastic, or
steel (Kouvaritakis et al., 2005; van der Zwaan and Rabl, 2004).
Applications include both central station PV and rooftop PV. Total
system capital cost is the sum of PV module cost plus balance-of-
system (BOS) cost, which include electrical installation, inverters,
wiring and power electronics (Curtright et al., 2008; Nemet, 2006;
Soderholm and Sundgqyvist, 2007).

Most of the learning curve studies reviewed focus on the PV
module cost, again using a one-factor model (Eq. (2)) to relate the
cost per peak watt of output ($/Wp) to cumulative installed ca-
pacity. One study uses electricity generation cost as the dependent
variable. Several other studies report learning rates for BOS costs.
Duke et al. (2005) argue that while learning by doing for solar PV
modules is a global phenomenon, learning-by-doing for balance of
system costs is a local effect without similar spillover implications.

As with wind systems, there were substantial variations in the
geographic regions and time periods studied, as seen in Fig. 8.
Several one-factor studies suggest learning rates of around 20%
(Swanson, 2006, van Sark et al., 2008, van Sark, 2008). Overall,
there is roughly a four-fold range in reported learning rates for
one-factor models, with a mean value of 23%, as shown in Fig. 9.
While some authors suggest that learning curves should also
systematically report the associated learning rate and progress
ratio errors, studies often fail to report such values.

Two studies of PV systems develop a two-factor learning curve
(Eq. (4)). Here, Miketa and Schrattenholzer (2004) find a learning-
by-doing rate of 17% and a learning-by-researching rate of 10%.
Kobos et al. (2006) also include a time lag between investments in
R&D and subsequent declines in cost, as well as a depreciation
factor to account for the rate of technology obsolescence. Using
worldwide data for solar PV from 1975 to 2000, they report rates
of 18.4% for learning-by-doing and 14.3% for learning-by-
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researching. Further details of studies reporting solar PV learning
rates appear in Tables A3 and A4 of Appendix A.

Other studies propose more complex models to explain solar
PV cost trends. Nemet (2006), for example, considers seven fac-
tors, including plant size, module efficiency, wafer size, yield,
market share for poly-crystalline cells, silicon cost, and silicon
consumption. He finds that the three most important factors ex-
plaining cost declines from 1975 to 2001 were plant size, cell ef-
ficiency and, to a lesser extent, the cost of silicon. The four re-
maining factors each accounted for less than 2% of the cost decline.
Taken together, however, all seven factors explained less than 60%
of the observed cost reduction during that period, indicating that
other factors also contributed to cost reductions.

More recently, Yu et al. (2011) assess PV learning curves using a
novel approach that incorporates input price changes and scale
effects. They find that in some stages of the PV production, one
sees stable PV module prices, despite the fact that cumulative
capacity is increasing—i.e., no learning occurs. The authors argue
that these effects are due to changes in input prices and scale ef-
fects, and estimate a multi-factor learning curve account for these
effects, but do not report learning rates.

Gan and Li (2015) further studied the relationship between the
emergence of low-cost Chinese PV modules in the global market

and cumulative production, silicon prices, and supply-demand
imbalances. The authors run a number of regression models that
include different control variables. Overall, they find that the
learning rate for PV module cost declined over time, from 32% to
14% over periods from 1976 to 2006, indicating lower rates of
progress as PV technology matured (see Table A3; Appendix A for
more details).

Candelise et al. (2013) offer a further explanation of recent PV
price trends. They report that in the mid-2000s the demand for
solar PV grew, leading to production bottlenecks due to silicon
shortages. This led to an increase in silicon prices and resulting
increases in PV module prices. That, in turn, provided a push for
innovations that resulted in less silicon used in panels, increases in
module efficiency, renewed R&D efforts, and a reduction in silicon
production costs. In addition, there were improvements in man-
ufacturing processes as well as industry restructuring. The result
was an over-supply leading to low silicon and module prices in the
late-2000s and early 2010s. For example, compared to average
prices above $4.50/W,, in the U.S. and Europe from 2003 to 2008,
the average retail module price in March 2012 fell to $2.29/W,, in
the U.S. and to €2.17/W,, in Europe. The lowest prices at that time
were $1.1/W,, for a crystalline silicon solar module and $0.84/W,
for a thin-film module (Candelise et al., 2013). The authors further
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conclude that “established forecasting methods—experience
curves and engineering assessments—have limited ability to cap-
ture key learning effects behind recent PV cost and price trends:
production scale effects, industrial re-organization and shakeouts,
international trade practices and national market dynamics. These
forces are likely to remain prominent aspect of technology learn-
ing effects in the foreseeable future—and so are in need of im-
proved, more explicit representation in energy technology fore-
casting” (Candelise et al., 2013).

Finally, as technologies and processes evolve there are likely to
be shifts in the composition of different cost elements. For ex-
ample, in the case of residential solar PV, Seel et al. (2014) suggest
that differences in cost between the United States and Germany
are primarily due to differences in non-hardware, or “soft” costs.
For 2012, the authors find that residential PV systems were twice
as expensive in the U.S. as in Germany, due mostly to differences
for “customer acquisition, installation labor, and profit/overhead
costs, but also for expenses related to permitting, interconnection,
and inspection procedures” (Seel et al, 2014). Ideally, future
models might consider such factors separately to better disen-
tangle the costs of capital equipment, labor costs, and installation
costs and their drivers.

3.7. Biomass power plants

Interest in biomass as a low-carbon energy source extends not
only to its use for transportation fuels but for electricity produc-
tion as well. Most work on biomass-based power generation has
focused on fluidized bed combustion for combined heat and
power (CHP) and the production of biogas. Koornneef et al. (2007)
use global data on the capital costs of fluidized bed combustion
plants from 1976 to 2005 and find learning-by-doing rates ranging
from 7% to 10%. Similarly, Junginger et al. (2006) find that between
1990 and 2002 cumulative installed electrical capacity of fluidized
bed CHP in Sweden increased six-fold while specific investment
costs declined by a factor of five, yielding a learning rate of 23% for
capital cost. The resulting impact on the marginal cost of elec-
tricity generation gave a learning rate of roughly 8% for COE.

Junginger et al. (2006) also evaluate decreases in the invest-
ment costs of bio-digesters used to produce biogas in Denmark.
For the period from 1988 to 1998 they find a learning rate of 12%
due to a higher yield of biogas (by adding organic waste), an in-
crease in plant availability, and a reduction in operating and
maintenance costs. Looking at the total cost of biogas production
in Denmark (in units of 2002 euros/N m?), they report learning
rates for three time periods: 24% from 1984 to 1997; 15% from
1984 to 1991; and 0% from 1991 to 2001.

Cost trends for the production and transport of biomass also
are of interest as they contribute significantly to the total cost of
electricity or biogas production. Our review of studies examining
crop-based feedstock production costs, including sugarcane (Bra-
zil), corn (U.S.), and rapeseed (Germany), suggests that feedstock
production costs have declined over time. These studies report
learning rates associated with feedstock costs in the range of 20-
45%, as elaborated below.

For Brazilian sugarcane, van den Wall Bake et al. (2009) find a
learning rate of 32% based on a composite of production costs from
1975 to 1998 and sales price from 1999 to 2004. Sale prices were
used as a proxy for costs after 1999 because by that time the
market was fully deregulated, and prices tend to track costs rea-
sonably well in well-established markets (van den Wall Bake et al.,
2009). Cost reductions for soil preparation, crop maintenance, and
rent were strongly influenced by increasing agricultural yields and
harvesting productivity. In another study, Hettinga et al. (2009)
examine the costs of U.S. corn production between 1985 and 2000,
and find a learning rate of 45%. Higher corn yields and increasing
farm sizes were partly responsible for decreasing costs. A study of
German rapeseed production by Berghout (2008) finds a learning
rate of 19.6% based on production and cost data from 1971 to 2006.
Costs reductions are attributed to improved varieties of rapeseed,
higher crop yields, a reduction in fertilizer costs, and lower ferti-
lizer usage.

3.8. Geothermal power plants

We found no literature on historical learning rates for geo-
thermal electricity, neither for power plant technology (binary,
flash, flash-binary) or geothermal well-drilling and resource ex-
traction. In general, the cost of such plants is very sensitive to site-
specific resource temperature, geothermal fluid chemistry, geo-
thermal fluid flow rates, and ambient temperature, which makes it
difficult to characterize universal learning rates for this technol-
ogy. Schilling and Esmundo (2009) examine the influence of U.S.
government R&D spending. They report that the unit cost of
geothermal electricity generation (cents per kWh) in the U.S. fell
by roughly a factor of three between 1980 and 2005 as cumulative
government spending on R&D roughly tripled from $1.5 to $4
billion. However, the authors do not report any learning rates and
hypothesize that the relationship between technology perfor-
mance (electricity output per R&D dollar) and R&D spending re-
sembles an S-shaped curve, in which improvements are initially
slow, but then accelerate, followed by a slower rate of improve-
ment. For this paper, we combined their reported reduction in COE
together with Energy Information Administration (EIA) data on
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cumulative net electricity generation from geothermal plants
(million kWh) between 1980 and 2005 (EIA, 2014) to derive an
inferred learning rate of approximately 30% for geothermal tech-
nology based on a one-factor model (Eq. (2)). However, additional
research is needed to better understand and characterize techno-
logical learning for geothermal power plants.

3.9. Discussion

Our meta-analysis of the literature on learning rates for electric
power plants reveals a wide range in reported values, both within
and across the 11 power generation technologies studied. With
few exceptions (most notably for nuclear power plants), studies
report declining unit capital cost (or cost of electricity generation)
with increasing installed capacity (or production) over the time
periods analyzed, The most-studied technologies in the literature
were onshore wind and solar PV energy systems, whose average
learning rates for one-factor models were 12% and 23%, respec-
tively (see Table 1). However, there was substantial variability in
the learning rates for a particular technology derived by different
authors using different datasets. While some of these differences
are readily attributed to factors identified in specific studies—such
as the use of two different GDP deflator rates in Junginger et al.
(2005) (see Fig. 5)—in most cases there was no clear relationship
to major variables such as the time periods and geographical re-
gions that differed across the studies reviewed. In general, power
plant technologies using fossil fuels (coal and natural gas) had a
narrower range of learning rates that were smaller in magnitude
than those for renewable energy technologies (wind, solar, and
biopower), likely reflecting their different levels of maturity, scales
of deployment, and time frame of the analysis.

The discussions of individual technologies noted a number of
factors identified in the literature to explain variations in reported
learning rates. One important additional factor is the choice of
geographic boundaries for a learning curve. For example, Lindman
and Soderholm (2012) conducted a meta-analysis of wind power
technology and found that “the choice of the geographical domain
of learning, and thus the assumed presence of learning spillovers,
is an important determinant of wind power learning rates.” They
find that including a wider geographical scope implies higher

learning rates. Thus, while some studies use national boundaries
to calculate learning rates (e.g., see Figs. 4, 6, and 8), others argue
that for certain technologies (like onshore wind) diffusion and
spillover effects are global in nature, so that global experience is
the appropriate metric for a learning curve (e.g., Junginger et al.,
2005).

Arguably a greater challenge for learning curves is to quantify
the true production cost trend of a technology, as opposed to its
market price—which is the basis for most experience curves.
Though in general prices decline in parallel with costs over long
period of time (Boston Consulting Group, 1972; Lieberman, 1987),
they are quite often distorted by market structure, subsidies, high
market demand, monopolies, oligopolies and other factors (see
e.g., Junginger et al., 2005). Thus, market price is often an im-
perfect measure of cost in non-equilibrium markets (Wene, 2008).
This may especially influence the magnitude and meaning of
learning rates for renewable energy technologies, which have been
the focus of many government regulatory and/or incentive pro-
grams in recent years.

In addition to learning rates from one-factor experience curves,
a smaller number of studies report two-factor models that include
separate rates for learning by doing and learning by researching.
The latter reflects the effect on technology cost reductions of cu-
mulative spending for research and development. Where both
learning rate values are reported, the effect of R&D spending is
more frequently larger than the LBD effect. However, the difficulty
of acquiring complete and reliable data for R&D spending for a
particular technology has significantly limited the application and
use of this two-factor model for technology forecasting.

4. Policy implications

In this section we discuss some of the policy implications of
using learning curves or other analytical models of technological
change to estimate the future cost of various electric power gen-
eration technologies. In particular, we focus on the implications of
alternative learning models on the policy-related results of large-
scale energy-economic models used to inform energy and en-
vironmental policy, especially with regard to mitigating global
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Fig. 9. Histogram of capital cost ($/Wp) learning rates for PV reported in the
literature.

climate change. We note that many of the qualitative findings and
observations in this section of the paper echo those of other re-
searchers who have studied experience curves and energy models
(e.g., see Junginger et al. (2010), which includes contributions from
a number of leading researchers in this field). Our current study
extends prior work to include reviews of newer models and stu-
dies (since 2009), with more extensive discussions of the policy
implications of exogenous and endogenous learning models that
include two-factor learning curves and their use in energy-eco-
nomic models.

Since the early 2000s, a number of large-scale energy-eco-
nomic models have incorporated learning curves to model tech-
nological change endogenously, in contrast to exogenous specifi-
cation of technology cost trajectories. Here, we summarize our
findings on the implications of endogenous versus exogenous re-
presentation of cost trajectories for power generation technologies
based on our review of several energy-economic models used for
policy analysis, including the MESSAGE-MACRO model (McDonald
and Schrattenholzer, 2001), the ReMIND-R model (Luderer et al.,
2010), the WITCH model (Bosetti et al., 2009, 2011), the NEMS
model (Gabriel et al., 2001), the EPA-MARKAL model (Shay et al.,
2006), the REGEN model (EPRI, 2013b), and the GCAM model
(PNNL, 2014).

To structure this discussion, we first look at models that use
one-factor or two-factor learning curves to endogenously calculate
future technology costs. We then discuss several models that
specify technology costs exogenously. In both cases, we focus on
how the representation of future technology costs affects policy-
relevant results. The particular results of interest include (1) the
mix of future power generation technologies in climate policy
scenarios with GHG mitigation, (2) the cost of these mitigation
scenarios, and (3) the influence of R&D investments on the tech-
nology mix and overall cost of policy scenarios.

4.1. Models employing endogenous learning curves

A comprehensive review of large-scale models and their use of
learning curves was included in the Fourth Assessment Report of
the IPCC (IPCC, 2007) and a more recent summary and discussion
appears in Lensink et al. (2010). In general, two classes of models
can be defined. One type is a partial equilibrium model that ty-
pically has a fair amount of technological detail. In contrast, gen-
eral equilibrium models usually have much simpler representa-
tions of the energy sector, but include all other sectors of the
economy. Thus, they are able to explore issues such as the re-
lationship between R&D investments in energy technologies and
the opportunity costs of such investments.

In studies with endogenous technological learning, the cost
and installed capacity of each technology are determined
through an iterative calculation based on initial specifications.
Thus, the future cost of a technology depends not on elapsed
time (as in the case of exogenous or autonomous learning), but
on its cumulative installed capacity and, in the case of two-factor
models, cumulative R&D expenditures at different points in time
for a particular scenario. We also note that when learning curves
are incorporated endogenously into either full or partial equili-
brium models, a cost floor may be imposed by the modelers to
prevent a cost from falling below some specified value. This is an
artifact of the energy models, done out of necessity in order to
find feasible solutions and prevent technologies from becoming
unrealistically cheap over the time frames (decades to a century)
typically employed in large-scale energy models (Jamasb and
Kohler, 2007). Cost floors, however, are not commonly discussed
or reported in studies that derive technology learning rates from
empirical data, though the concept of a floor is inherent in stu-
dies that report “S-shaped” learning curves rather than the
prevailing log-linear form.

The results from models employing one-factor experience
curves often show benefits from the early adoption of a new
technology because early adoption stimulates larger cost re-
duction over the longer term (Mattsson and Wene, 1997;
Goulder and Mathai, 2000; van der Zwaan et al., 2002; Manne
and Richels, 2004; Nordhaus, 2009). Thus, with induced (en-
dogenous) technological change the cost of delays in introducing
new or improved technology can be much higher than without
learning effects (Grubb et al., 1995; Bosetti et al., 2011). For ex-
ample, Riahi et al. (2004) compare results with and without in-
duced learning for carbon capture and storage (CCS) technology
using the MESSAGE-MACRO model. They find that scenarios with
endogenous learning lead to lower overall costs for CCS, result-
ing in higher abatement levels using CCS technology (as opposed
to other abatement methods), and with lower shadow prices of
global carbon dioxide abatement compared to no endogenous
learning. From a policy perspective, the implication of these
results is that CO, mitigation policies are much less costly than
in models without endogenous learning, with CCS technology
playing a much more important role when learning curve effects
are incorporated in the analysis.

The National Energy Modeling System (NEMS), an energy-
economic model of the U.S. developed for the the Energy In-
formation Administration of the U.S. Department of Energy (DOE/
EIA) (Gabriel et al., 2001), also employs endogenous learning
curves. The electric utility sector component of NEMS includes 54
electricity generating technologies (34 for existing power plants
and 24 others available for new construction). Each plant type is
further sub-divided into several components (a total of 26 com-
ponents across all generating types), to which technological
learning factors are applied using a traditional one-factor learning
curve, as in the component-based formulation discussed earlier.
The capacity of all plant types having a particular component is
then aggregated to derive the total learning-related capacity of
that component. Different plant types thus share learning if they
have the same component.

NEMS further classifies each technology component as being
either “revolutionary,” “evolutionary” or “mature,” with differ-
ent learning rates assigned for each stage of development, along
with specified rates of change from one stage to another (for
example, a “revolutionary” component becomes “evolutionary”
after three doublings of the initial capacity). Additionally, each
component is set to have a certain annual minimum learning,
even if no new capacity additions are made. Once all the learning
factors at the component level are applied, the components are
aggregated based on their fractional contribution to overall plant
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costs (as in Eq. (5)). The results are then used to calculate
learning factors at the power plant type level. NEMS also uses
several other factors to estimate the future cost of power plant
technologies, such as regional cost factors and “technological
optimism” factors (Gumerman and Marnay, 2004).

Despite all this complexity, however, there appear to be no
published studies of how U.S. energy projections using NEMS
would differ in the absence of endogenous learning rate assump-
tions. Qualitatively, one would expect higher overall technology
costs in the absence of endogenous learning. Such differences are
likely to have significant policy implications, as in the example
described earlier. However, absent a systematic comparison of the
effects of alternative learning assumptions, and the insights such a
comparison would afford, one cannot assess the extent to which
decisions or conclusions based on NEMS results with endogenous
learning could be erroneous or misleading for purposes of policy
analysis or guidance.

In other examples of the policy implications of learning models,
van Benthem et al. (2008) analyze the solar photovoltaic market in
California under different learning-by-doing assumptions to de-
termine the level of subsidies that are most economically efficient.
They conclude that without the cost reductions from learning by
doing the subsidies studied cannot be justified by environmental
externalities alone.

Two other recent studies explore the implication of increased
technology costs during early commercialization (Chen et al.,
2012) or at some point in technology development (Hayward and
Graham, 2013). Both studies find that model investment decisions
vary significantly across the range of learning rates and cost in-
creases examined. The projected long-term costs are nevertheless
most sensitive to the assumed learning rates given the positive
feedback nature of the experience curve.

Two-factor learning curves of the type discussed earlier also
have been incorporated into large-scale energy models including
MERGE (Kypreos and Bahn, 2003; Wene, 2008), ERIS (Barreto
and Kypreos, 2004), POLES (Criqui et al., in press), as well as
other simulation frameworks (Fischer and Newell, 2008). As
with one-factor learning curve, studies generally find that in-
corporating two-factor models endogenously tends to reduce the
long-term cost of environmental policy measures while abating
emissions more extensively compared to scenarios with no
learning or with only one-factor models (Watanabe et al., 2003,
2000; Barreto and Kypreos, 2004; Fischer and Newell, 2008).
Some studies that explicitly incorporate R&D expenditures also
find that this may result in less aggressive abatement actions in
the near-term because of increases in near-term societal costs
(Barreto and Kypreos, 2004). Similarly, Goulder and Mathai
(2000) find that the inclusion of R&D expenditures shifts some
abatement from the present to the future. This is because in-
duced technology innovation lowers the future cost of abate-
ment, which in turn lowers the “shadow cost” of present-day
emissions. Thus, the optimal level of abatement is higher in later
years and lower in early years. The additional cost reductions
stemming from learning by doing then act to accelerate the ef-
fects of initial R&D investments (Kouvaritakis et al., 2005).

Researchers have also found that both LBD and LBR can create
“lock-in" effects: that is, R&D funding of some options may lock
out other options that fail to benefit from R&D-induced learning.
Thus, model results based on learning curves are often path-
dependent.

Goulder and Mathai (2000) further study the opportunity
cost of directing limited R&D resources to the energy sector. They
claim this has the adverse effect of producing a sharper decline
in GDP when a carbon tax is introduced to control greenhouse
gas emissions. In their study, they find a 25% greater loss in GDP
than without the increased investment in R&D. Their explanation

for this is that under equilibrium conditions the rate of return on
investments is the same across all sectors. Therefore, an increase
in R&D expenses to induce technological change in low-carbon
energy sources (e.g., renewables) results in reduced R&D in-
vestments elsewhere, thus reducing productivity in other sec-
tors. Nordhaus (2009) also concludes that omitting the oppor-
tunity cost of LBR (as well as LBD) incorrectly estimates the total
marginal cost of output and the benefits of induced technological
change.

More recent work from Bosetti et al. (2011) employs a two-
factor learning curve with decreasing marginal returns to ex-
amine the mitigation cost implications and economic efficiency
of climate-related R&D and LBD. Using the WITCH model, they
find that capital costs for renewable power generation and
“breakthrough” low-carbon technologies are reduced by invest-
ments in targeted R&D and technology deployment. They also
find that even in the absence of a climate policy, R&D invest-
ments reduce the level of CO, emissions and overall mitigation
costs. Furthermore, they find that R&D expenditures consistent
with the peak historical rate can achieve emission reductions by
the end of the century that are similar to those from a much
larger R&D program. This is due to the diminishing returns of
R&D investments, plus a shift in consumption from earlier to
later time periods. Finally, the authors find that by internalizing
technological externalities internationally, and by requiring
greater investments in technology innovation in earlier time
periods, policies aimed at technology innovation deliver net
gains in overall welfare during the second half of the century,
offsetting losses during earlier periods.

There are important limitations to the studies mentioned
above. First, while the concept of a two-factor learning curve is
theoretically appealing, data availability is generally an issue.
Reliable data on public R&D spending, and especially on private-
sector R&D spending, are often hard to come by. In addition, the
quality of available data is often less than desirable (Capros et al.,
2005; NRC, 2010). Second, there is a substantial level of co-lin-
earity between R&D investments and the cumulative production
or installed capacity of a technology. Thus, these two quantities
are likely to directly influence one another and/or respond to the
same drivers (Barreto and Kypreos, 2004; Soéderholm and
Klaassen, 2007). An increase in technology sales or deployment,
for example, may stimulate R&D spending to further improve the
technology, which would not have occurred in the absence of
increased deployment. Third, from a policy perspective, gov-
ernment-funded R&D and private-sector R&D are quite different
and can have very different impacts on the performance and/or
cost of a specific technology (Wene, 2008). Thus, R&D policy
conclusions based on a single metric of combined public and
private R&D investments can be misleading.

4.2. Models employing exogenous learning curves

Most of the large-scale energy-economic models in use today
employ exogenous rather than endogenous specifications of
technology performance and cost trajectories. Here, future costs
and/or performance are typically specified in one of two ways:
either as an annual rate of change from a specified reference year
value (such as an x% per year decrease in capital cost and/or a y%
per year increase in plant efficiency), or by direct specification of
a cost or performance parameter value (such as $/KW or net
plant efficiency). For example, the Global Change Assessment
Model (GCAM) developed by Pacific Northwest National La-
boratory (PNNL, 2014), includes a decrease in technology costs of
0.75% per year (or 4% per five-year time period) to represent
technological improvements that reduce the costs of resource
extraction (McJeon et al., 2014). In these cases, the quantitative
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values assumed reflects the judgment of the modelers, which
may be informed by data analysis and/or expert elicitation. Such
assumptions may or may not change for different time periods or
across different scenarios using a particular model.

In models that exogenously specify technology performance
improvements and/or cost reductions as a function of time (e.g.,
Nelson, 2013), investments in new technology are typically de-
ferred until the technology cost has declined sufficiently for it to
be competitive (in either business-as-usual or climate policy sce-
narios). This is the opposite of what is typically found using en-
dogenous learning curves. With endogenous learning, early in-
vestments in a technology can help drive down costs and make
subsequent deployment even more attractive. Even modest as-
sumptions about this kind of technological progress can dramati-
cally affect the projected cost of GHG mitigation (Kohler et al.,
2006; IPCC, 2007). This is particularly true for optimization models
with “perfect foresight,” which solve all time steps simultaneously
to achieve maximum reductions in technology cost via learning
across all time periods.

Just how different are the cost trajectories specified by model
users compared to those derived from learning curves? One ex-
ample comes from our study of the U.S. Regional Economy,
Greenhouse Gas and Energy (US-REGEN) model developed by the
Electric Power Research Institute (EPRI) (EPRI, 2013b). According
to EPRI, “this is an inter-temporal optimization model that com-
bines a detailed dispatch and capacity expansion model of the
electric sector with a high-level dynamic computable general
equilibrium model of the United States economy.” The two models
are then solved iteratively to evaluate the effects of various cli-
mate, energy and environmental policies on the electric power
sector, as well as the overall energy system and economy of the
United States out to the year 2050.

In US-REGEN, the future costs of 12 power generation tech-
nology options are specified exogenously for the time period 2015
to 2050 based on the judgment of technology domain experts. The
same cost trajectories (cost versus time) apply to a base case
scenario and three climate policy scenarios with reduced carbon
emissions. However, the results of each scenario yield a different
level of technology deployment in any future year. By combining
cost and deployment projections for a particular scenario one can
derive an implied learning rate for each technology based on a
one-factor learning curve (Azevedo et al., 2013).

For some power generation technologies, and for some policy
scenarios, the implied learning rates fall within the range of values
found in the literature (as summarized in Table 1). In other cases,
however, the implied learning rates for one-factor models are
outside the ranges found in the literature (either higher or lower,
depending on the level of technology deployment). Similarly,
across the set of scenarios the same (exogenously specified) cost
reduction is achieved independent of the level of technology de-
ployment—a result contrary to the one-factor learning curve for-
mulation, but possible with a multi-factor model where costs can
fall due to other factors, such as investments in research and
development.

Other large-scale models that also specify cost trajectories
exogenously exhibit similar behavior. For example, GCAM as-
sumes that the capital cost of different power generation tech-
nologies falls by specified percentages of the base year cost at
certain points in time, irrespective of the installed capacity or
production from that technology (PNNL, 2014). Details of those
specifications vary for each technology and for different time
periods. In each case, however, the rate of cost reduction of each
technology in any future year remains fixed, independent of the
amount deployed.

As with other large-scale models, however, the policy im-
plications of these differences in cost trajectory specifications are

simply not known since there are no results based on en-
dogenous learning for comparison. At the very least, differences
between endogenous and exogenous cost specifications will
produce different mixes of technologies in each of the scenarios,
as well as differences in their costs. Such differences could have
significant policy implications. However, absent more detailed
study, the nature and magnitude of such impacts remains
unknown.

5. Discussion and conclusions

Our literature review of technological change models for 11
electric power generation technologies (including fossil-based
power plants, nuclear plants, and a variety of renewable-based
technologies) finds that the most prevalent model used to char-
acterize future technology costs is a one-factor equation in which
cost is a log-linear function of the cumulative installed capacity (or
electricity generation) of the technology. This learning curve (or
experience curve) formulation yields a single learning rate that
corresponds to the fractional reduction in cost for each doubling of
cumulative capacity or production. Although often referred to as
the “learning-by-doing” (LBD) rate, this learning rate parameter is
effectively a surrogate for all factors that contribute to observed
changes in cost.

Our brief review of the theory of technological change in
Section 2 noted a number of other model formulations that have
also been reported and discussed in the literature. That review
also emphasized that there are still considerable shortcomings
in the ability of current models to represent the complex issue
of induced technological change and the underlying drivers of
technology cost reductions. Thus, the use of experience curves
to forecast future technology costs is beset with uncertainties.

We also noted that since the early 2000s, a number of large-
scale energy-economic models have incorporated learning curves
to model technological change endogenously, in contrast to exo-
genous specification of cost trajectories. In general, when one-
factor learning curves are adopted, models with endogenous
technological learning tend to project higher penetration of ad-
vanced technologies and lower overall costs compared to cases
without endogenous learning. As it relates to climate mitigation
strategies, such models tend to favor earlier action to reduce
emissions from energy use, including electric power generation. In
contrast, models that specify cost trajectories exogenously—which
remains the most common approach in large-scale energy-eco-
nomic models used today—tend to defer emission reductions and
the deployment of new technologies until their costs fall to more
competitive levels. Policy actions are therefore delayed to later
time periods. Thus, the choice of method and assumptions em-
ployed to model future technology costs can have significantly
different policy implications.

The situation is even more complex for endogenous models
that incorporate both learning by doing and learning by re-
searching. As indicated in our discussion of the literature, such
models show that while R&D investments can accelerate tech-
nology cost reductions, they also incur opportunity costs that
can burden the overall economy. An understanding of such tra-
deoffs is of value in assessing the merits of alternative policy
options. Conceptually, only full general equilibrium (GE) models
with constraints on investments and an opportunity cost for
capital are capable of correctly quantifying the full economic
ramifications of investments in technology R&D. The innovation
payoffs from energy R&D, however, tend to be highly specific to
the technologies targeted for investments. Unfortunately, most
GE models have a relatively simple and highly aggregated de-
piction of technology that precludes directing R&D investments
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to particular technology areas (e.g., selected renewable energy
systems). In contrast, partial equilibrium models of the energy
sector tend to have a high degree of “bottom-up” technological
detail, but are not able to fully characterize, or empirically verify,
the full economy-wide impacts of R&D investments. The result is
a bit of a “Catch-22” in which neither approach to modeling is
especially well-suited to rigorously address complex questions
related to R&D investments.

In practice, the additional limitations associated with data re-
quirements for two-factor models, and the inability to separately
quantify rates for LBD and LBR, further calls into question the
validity of specific model results and their policy implications.
Thus, the conclusion we draw from our literature review is that
current large-scale models employing two-factor learning curves
can at best give only a qualitatively indication of the effects of
learning by research in contrast to learning by doing. If the basic
goal of modeling is to understand the influence of technology cost
trends on the outcome of various policy scenarios (such as for GHG
mitigation), the use of one-factor models where the learning rate
represents all factors that contribute to cost reductions at present
appears to be more defensible than the more complex multi-factor
approach incorporating LBR.

Even where simpler learning curves are adopted to represent
technological progress in energy models, technology experts and
modelers face important decisions regarding the most appropriate
ways to represent the evolution of energy technology costs. Where
learning curves are used (either for individual technologies, or a
cluster of technologies; see, for example, Anandarajah and
McDowall (2015)), these decisions include (among others) the
choices of an appropriate learning rates for the technology, the
initial cost and experience level at which learning begins, the
shape of the learning curve, the consideration of a cost floor or end
point for learning, the appropriate measure of experience, the
geographic boundary to which the experience metric applies, and
the components of a complex technology whose experience and
learning rates may differ (resulting in disaggregation that spawns
additional technologies, each requiring the decisions noted above).
As seen earlier in Section 3, the methods, data, and assumptions
adopted by researchers to characterize historical learning rates of
power plant technologies vary widely, resulting in high variability
across studies. Nor are historical trends a guarantee of future be-
havior, especially when future conditions may differ significantly
from those of the past.

A similar situation exists for models that rely on exogenous
specification of technology costs or rates of change, whether based
on approximations of learning curves, or the judgment of mode-
lers and technology experts. Again, decisions must be made re-
garding the cost trends assumed for a particular technology (or
cluster of technologies), and whether, or under what circum-
stances, those assumptions should vary as a function of the sce-
nario or other model assumptions.

Against this backdrop, our own recommendation for the best
way to address these challenges is to adopt an expansive and
systematic use of sensitivity analyses to characterize and quantify
as fully as possible the effects of uncertainties in the assumed rates
of technological change. This analysis should focus on implications
for key outcomes such as the portfolio of technologies and overall
costs in a given scenario. This recommendation is consistent with
prior studies that have called for greater attention to uncertainty

analysis in energy modeling (e.g., Junginger et al., 2010; Yeh and
Rubin, 2012). However, best-practice measures of this type have
yet to be fully embraced by the energy modeling community, in
part because they can be time consuming and computationally
costly to implement. Nonetheless, if pursued more broadly, the
systematic analysis of the effects of uncertainty in learning would
be a welcomed advance in this field, and could help guide prio-
rities for subsequent research in model development and
applications.

In this context, the learning rate data and model formulations
summarized in this paper can be used to support a much richer set
of analyses than is currently found in the literature for models that
employ experience curves. For models that exogenously specify
technology cost trends, these data also provide an alternative
picture that can be used to support, sharpen, or challenge nominal
assumptions. In all cases, the result will be a better, more robust
understanding of the policy implications of assumptions regarding
future technology costs.

Looking further ahead, more sustained research into the un-
derlying factors that govern or influence technological innovations
and diffusion is clearly needed. While the development of a
comprehensive research agenda is well beyond the scope of this
paper, we nonetheless suggest a number of areas where we be-
lieve research could significantly advance this field. They include:
better data and better econometric models to explain the under-
lying factors that govern or influence technological innovation and
diffusion; more robust analyses that compare the results of energy
models based on experience curves of different mathematical
forms (e.g. log-linear versus other functional forms); more ex-
tensive decomposition of learning rates into technology and other
cost components with differing characteristics (e.g., labor, mate-
rials); and, criteria for establishing the geographic or other
boundaries of learning where experience (learning spillover) may
or may not be shared. Pending the development of improved
models of technological change, the need to better characterize
uncertainties and identify robust conclusions becomes all the
more important. The present lack of such information increases
the likelihood of over-confidence in the outcomes of current en-
ergy-environmental model projections and their inappropriate
applications to policy guidance.
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Table A1
Single-factor learning models for wind power.

Study Time Region Scope Learning rate R° Dependent variable Explanatory variable(s)
period (%)
Wiser and Bolinger (2012) 1982-2004 Global Land-based wind farm 14 n/a  Capital cost ($/kW) Cumulative capacity (MW)
Wiser and Bolinger (2012) 1982-2010 Global Land-based wind farm 8 n/a Capital cost ($/kW) Cumulative capacity (MW)
Qui and Anadon (2012) 2003-2007 China Land-based wind farm 4 n/a Price of electricity ($/kWh) Cumulative capacity (MW), R&D spending ($)
Lemming et al. (2009) 1985-2000 n/a Offshore wind farm 10 n/a n/a n/a
Junginger et al. (2009) 1988-2000 Global HVDC cable for offshore wind 38 0.966 HVDC Cable Costs ($/MW-km) Cumulative submarine HVDC installation (GW-
farm km)
Junginger et al. (2009) 1970-2000 Global HVDC converter stations for off- 29 0.581 Price per converter station ($/kW/ Cumulative converter station installed (GW)
shore wind farm station)
Junginger et al. (2009) 2000; 2003 Two offshore wind Offshore turbine installation 77 n/a Installation time (days) Cumulative number of offshore turbines
farms installed.
Nemet (2009) 1981-1995 Global Land-based turbines 30 n/a  Capital cost ($/kW) Cumulative capacity (MW)
Nemet (2009) 1981-2006 Global Land-based turbines 8 n/a Capital cost ($/kW) Cumulative capacity (MW)
Neij (2008) 1990-2000 Global Land-based turbines 11 n/a Turbine list price ($/kW) Cumulative installed capacity (MW)
Junginger et al. (2005)? 1992-2001 Global (using UK Land-based wind farm 19 0.978 Turnkey investment cost ($/MW) Global cumulative installed wind capacity
price data)
Junginger et al. (2005)* 1992-2001 Global (using UK Land-based wind farm 21 0.98 Turnkey investment cost ($/MW) Global cumulative installed wind capacity
price data)
Junginger et al. (2005)* 1990-2001 Global (using Spain Land-based wind farm 15 0.887 Turnkey investment cost ($/MW) Global cumulative installed wind capacity
price data)
Junginger et al. (2005)* 1990-2001 Global (using Spain Land-based wind farm 20 0.907 Turnkey investment cost ($/MW) Global cumulative installed wind capacity
price data)
Junginger et al. (2005)? 1990-1998  Global (using Spain Land-based wind farm 18 0.875 Turnkey investment cost ($/MW) Global cumulative installed wind capacity
price data)
Junginger et al. (2005)* 1990-1998  Global (using Spain Land-based wind farm 23 0.905 Turnkey investment cost ($/MW) Global cumulative installed wind capacity
price data)
Neij et al. (2004) 1981-2000 Denmark Turbines produced by Danish 8 0.84  Price of wind turbines ($/kW) Cumulative capacity produced (MW)
Manufacturers
Neij et al. (2004) 1987-2000 Germany Turbines produced by German 6 0.74  Price of wind turbines ($/kW) Cumulative capacity produced (MW)
manufacturers
Neij et al. (2004) 1981-2000 Denmark Turbines produced by Danish 14 0.97  Specific production cost ($/kWh) Cumulative capacity produced (MW)
Manufacturers
Neij et al. (2004) 1987-2000 Germany Turbines produced by German 12 0.87  Specific production cost ($/kWh) Cumulative capacity produced (MW)
manufacturers
Neij et al. (2004) 1981-2000 Denmark Turbines produced by Danish 17 0.97 Levelized production cost ($/kWh)[4]  Cumulative capacity produced (MW)
Manufacturers
Neij et al. (2004) 1987-2000 Germany Turbines installed in Germany 6 0.88  Price of wind turbines ($/kW) Cumulative capacity installed (MW)
Neij et al. (2004) 1981-2000 Denmark Turbines installed in Denmark 9 0.94  Price of wind turbines ($/kW) Cumulative capacity installed (MW)
Neij et al. (2004) 1981-2000 Denmark Wind farms built in Denmark 10 0.92 Total installation cost ($/kW) Cumulative installed capacity (MW)
Neij et al. (2004) 1984-2000 Spain Wind farms built in Spain 9 0.85 Total installation cost ($/kW) Cumulative installed capacity (MW)
Neij et al. (2004) 1994-2000 Sweden Wind farms built in Sweden 4 0.32  Total installation cost ($/kW) Cumulative installed capacity (MW)
Ibenholt (2002) 1991-1999 Germany Land-based turbine -3 n/a Price of electricity ($/kWh) and cumu- R&D, input prices, technology-pushing policies,
lative installed capacity (MW) competition, economies of scale
Ibenholt (2002) 1991-1999 UK Land-based turbine 251 n/a Price of electricity ($/kWh) and cumu- R&D, input prices, technology-pushing policies,
lative installed capacity (MW) competition, and economies of scale
Ibenholt (2002) 1984-1999 Denmark Land-based turbine 7.8 n/a Price of electricity ($/kWh) and cumu- R&D, input prices, technology-pushing policies,
lative installed capacity (MW) competition, and economies of scale
Ibenholt (2002) 1984-1988 Denmark Land-based turbine 11.7 n/a Price of electricity ($/kWh) and cumu- R&D, input prices, technology-pushing policies,
lative installed capacity (MW) competition, and economies of scale
Ibenholt (2002) 1988-1999 Denmark Land-based turbine 7.5 n/a Price of electricity ($/kWh) and cumu- R&D, input prices, technology-pushing policies,
lative installed capacity (MW) competition, and economies of scale
IEA (2000) 1985-1994 US. Land-based wind farm 32 n/a Cost of electricity ($/kWh) Cumulative production (TWh)
IEA (2000) 1980-1995 EU Land-based wind farm 18 n/a Cost of electricity ($/kWh) Cumulative production (TWh)
IEA (2000) 1990-1998 Germany Wind turbines sold in Germany 8 n/a Specific investment price ($/kW) Cumulative capacity (MW)
IEA (2000) 1982-1997 Denmark Turbines produced by Danish 4 n/a Price ($/kW) Cumulative Sales (MW)
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McDonald and Schrattenholzer
(2001)

McDonald and Schrattenholzer
(2001)

McDonald and Schrattenholzer
(2001)

McDonald and Schrattenholzer
(2001)

Trappey et al. (2013)°

Trappey et al. (2013)¢

1981-1995

1990-1998

1982-1997

1980-1994

2001-2010
2001-2010

OECD

Germany
Denmark
California

Taiwan
Taiwan

manufacturers
Land-based wind farm

Land-based wind farm

Land-based wind farm

Land-based wind farm

Wind farms
Wind farms

17

8

8

18

-11.4
-5.6

0.94
0.95
n/a

0.85

0.87

Specific investment cost ($/kW)

Specific investment price ($/kW)
Specific investment price ($/kW)
Specific production cost ($/kWh)

Installation cost ($/kW)
Installation cost ($/kW)

Cumulative capacity (MW)
Cumulative capacity (MW)
Cumulative capacity (MW)
Cumulative production (TWh)

Cumulative capacity (kW)
Cumulative capacity (kW)

@ Junginger et al. (2005) reports two values for each country for each period based on different GDP deflator values.
> A hierarchical learning curve isolating the contribution of learning from other attributes that affect cost, including steel and oil prices.

€ A basic learning curve that only included cumulative capacity.

Table A2

Multi-factor learning-diffusion models for wind power.

Study Time period Region Scope Learning rates® R?> Dependent variable Explanatory variable(s)

Jamasb and Koh- 1980-1998 Global Wind farm LBD=13.1%, n/a  Unit cost of generation ($/kW) and  Cumulative private and public R&D spending
ler (2007) LBR=26.8% cumulative installed generation ca-  (million $), cumulative number of technology pa-

pacity (MW) tents, time variable (years)

Klaassen et al. 1986-2000  Denmark, UK, and Germany Wind farm LBD=5.4%, 0.72 Specific investment cost ($/kW) R&D ($) and cumulative capacity (MW)
(2005) LBR=12.6%

Miketa and 1979-1997  Global Turbine LBD=9.73%, 0.8 Investment cost ($/kW) Cumulative capacity (GW) and knowledge stock
Schrattenhol- LBR=10% (cumulative R&D minus depreciation)
zer (2004)

Ek and S6- 1986-2002  Global Wind farm LBD=17%, 0.88 Investment Price ($/kW) R&D ($) and cumulative capacity (MW)
derholm (2010) LBR=20%

Soderholm and Varies by Global based on data from Denmark (1986-1999), Wind farm LBD=3.1%, 0.81 Investment Price ($/kW) R&D ($) and cumulative capacity (MW)
Klaassen country Germany (1990-1999), Spain (1990-1999), Sweden LBR=13.2%
(2007) (1991-2002), and UK (1991-2000)

Jamasb and Koh- 1994-2001 OECD Offshore wind LBD=1% LBR=4.9% n/a Unit cost of capacity ($/kW) R&D ($) and cumulative capacity (MW)
ler (2007) farm

2 LBD=learning by doing; LBR=learning by researching.
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Table A3

Single factor learning rates for solar PV reported in the literature.

Study Time period Region Scope Learning rate Dependent variable Explanatory variable

Schaeffer et al. (2004) 1992-2001  Germany PV modules 10% n/a n/a

Schaeffer et al. (2004) 1976-2001  Netherlands PV modules 10% n/a n/a

Schaeffer et al. (2004) 1976-2001 Global PV modules 20% Price of power modules (2001$) Cumulative shipments (MWp)

Schaeffer et al. (2004) 1987-2001  Global PV modules 33% Price of power modules (2001$) Cumulative shipments (MWp)

Schaeffer et al. (2004) 1992-2001  Germany PV BOS* 22% BOS cost (euro 2000/Wp) Cumulative capacity (MWp)

Schaeffer et al. (2004) 1992-2001  Netherlands PV BOS?* 19% BOS cost (euro 2000/Wp) Cumulative capacity (MWp)

Schaeffer et al. (2004) 1992-2001  Germany PV inverter 9% Inverter price (euro 2000/W- Cumulative installed PV capacity
nom) (MWp)

Schaeffer et al. (2004) 1992-2001  Netherlands PV inverter 7% Inverter price (euro 2000/W- Cumulative installed PV capacity
nom) (MWp)

Strategies Unlimited (2003) 1976-2001 PV modules 20% n/a n/a

Neij (2008)

Maycock (2002) PV BOS 26% n/a n/a

Parente et al. (2002) 1981-2000 PV modules 23% n/a n/a

Neij (2008)

Neij (2008) 1976-1996 Crystalline silicone PV modules 20% n/a n/a

Harmon (2000) 1968-1998  World Module 20% Specific investment price ($/kW Cumulative installed capacity (MW)
peak)

IEA (2000) 1985-1995 EU N/A 35% Specific production cost (ECU/  Cumulative production (TWh)
kWh)

IEA (2000) 1976-1992  World Module 18% Sale price ($/W peak) Cumulative sales (MW)

IEA (2000) 1976-1996  EU Module (stability stage) 21% Sale price ($/W peak) Cumulative sales (MW)

IEA (2000) 1972-1996  EU Module (development and price um- 16% Sale price ($/W peak) Cumulative sales (MW)

brella stage)

IEA (2000) 1979-1988  EU Module (shake out stage) 47% Sale price ($/W peak) Cumulative sales (MW)

Tsuchiya (1992) 1979-1988  Japan Crystalline silicon PV module 21%

Watanabe (1999) 1981-1995  Japan PV modules 20% n/a n/a

Cody and Tiedje (1997) 1976-1988  U.S. PV modules 22% n/a n/a

Williams and Terzian (1993) 1976-1988  U.S. PV modules 18% n/a n/a

Maycock (1975) 1959-1974  US. Panel 22% Specific sale price ($/kW peak) Cumulative installed capacity (MW)

Swanson (2006) 1979-2005 US. PV modules 19% Module ASP ($2002) Cumulative production (MW)

Van Sark et al. (2008) 1976-2006  Global PV modules 21% (but also discuss different PR for dif- Average selling price ($2006) Cumulative power module shipments

ferent time periods) (MWp)
Gan and Li (2015) 1976-2011 Global PV modules 35% (1975-1988) 32% (1976-1992) PV modules cost Cumulative production

25% (1980-2001)
14% (1988-2006)

¢ BOS=balance of system.

Table A4

Multi-factor learning-diffusion models for solar PV.

Study Time period Region Scope

Learning rate

Dependent variable

Explanatory variable(s)

Kobos et al. (2006) 1975-2000

Miketa (2004)

1971-1997

Global n/a

LBD=18.4%, LBR=14.3% The cost proxy data from Maycock (2001a), (2001b) and that assume a

constant profit margin in the price data
Global PV modules LBD=17.46%, LBR=10% Price ($/W)

Cumulative Capacity (GW) and knowledge stock (cumulative

R&D minus depreciation)
Cumulative Capacity (GW) and knowledge stock (cumulative
R&D minus depreciation)
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