Reducing the Cost of CCS through "Learning By Doing"

Edward S. Rubin Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania

> Presentation to the Clearwater Coal Conference Clearwater, Florida June 2, 2014

Outline of Talk

- A brief overview of learning curves
- Application to power plants
- Application to emission control technologies
- Implications for future CCS costs

Overview of learning curves

T.P.Wright (1936) found that the cost of making airplanes declined with increasing experience

"Learning by doing" reduced manufacturing costs exponentially

. Rubin, Carnegie Mellon

Factors Addenting the	Cost of Airpheney
Countril of the Annual Charactery Stre	the local description of the local
T. S. Walson, Cooler	Wint Common
for second time a	1.000
[113] and year is not static out drawn while the other pro- ting the state is a stresson of a state of a state of a stress of the state of a stresson of a	
The others of questicity positions on our, particularly, quest, and questions of the sequence and fast in others, particularly and the sequence of the outside set and questions of the sequence of the programming methy and repertured astronom of the programming methy and repertured astronom of the programming of the sequence of the second set of the pro- tect of the sequence of the second set of the sequence of the second second second second second astronom of the second second second second second second second second second second second second second second sector second second second second second second second sector second second second second second second second second sector second second second second second second second second sector second se	
The point with control to control of the control of one well quarks to 1212 . A new disputing relation ranking was negatively to control deputing rela- ration was negatively pointer basis for the re- me point which provides positivities may be available time toget for scenario gravity the signal recens, which fairs descent far catassian as given only, tore touch to training graphone and cars interaction is seen to be straining graphone and cars interaction is seen to be straining polytonic and cars interaction is seen to be straining polytons and cars interaction is seen to be straining polytons and cars interaction is seen to be straining polytons and cars interaction is seen to be	

termined and the based on the samples are time. The work long this has no stars are method, set of the samples of a same set entroped period within a same time termined the same work with the same termined and the same termined are the sam

1

The Common (One-Factor) Learning Curve Model

General equation: $C_i = a P_i^{-b}$ where, $C_i = \text{cost to produce the } i^{\text{th}} \text{ unit}$ P_i = cumulative production or capacity thru period *i* b = learning rate exponenta = coefficient (constant)Fractional cost reduction for a doubling of cumulative capacity (or production) is defined as the learning rate: $IR = 1 - 2^{b}$

Application to power plants

Literature Review of Learning Rates for Power Generation Technologies

- PC plants
- PC with CCS
- IGCC plants
- IGCC with CCS
- NGCC plants
- NGCC with CCS
- NG turbines
- Biomass plants

• Hydroelectric

• Nuclear

- Geothermal
- On-shore wind
- Off-shore wind
- Solar PV
- Conc. solar thermal

Distribution of Reported Learning Rates for On-Shore Wind

Distribution of Reported Learning Rates for Solar PV

Range of Reported Learning Rates

Technology	Number of studies reviewed	Number of studies with one factor	Number of studies with two factors	Range of learning rates for "learning by doing" (LBD)	Range of rates for "learning by researching" (LBR)	Years covered across all studies
Coal*						
PC	2	2	0	5.6% to 12%		1902-2006
IGCC	1	1	0	2.5% to 7.6%		Projections
Natural Gas*	8	6	2	-11% to 34%	2.38% to 17.7%	1980-1998
Nuclear	4	4	0	<0 to 6%		1975-1993
Wind (on-shore)	35	29	6	-3% to 32%	10% to 26.8%	1980-2010
Solar PV	24	22	2	10% to 53%	10% to 18%	1959-2001
BioPower						
Biomass production	4	4	0	12% to 45%		1971-2006
Power generation**	7	7	0	0% to 24%		1976-2005
Geothermal power	3	0	0			1980-2005
Hydropower	3	0	2	0.48% to 11.4%	2.63% to 20.6%	1980-2001
*Does not include plants with CCS. **Includes combined heat and power (CHP) and biodigesters.						

Application to emission control technologies

U.S. Government Actions Affecting SO₂ and NO_x Control Technology

• Legislation / Regulation

- Clean Air Act Amendments of 1970, 1977, 1990
- New Source Performance Standards of 1971, 1979, 1992

R&D Funding / Financial Incentives

- EPA multi-million \$ research budget in 1970s
- DOE Clean Coal Technology Program (since 1985)
- Facilitating Technology <u>Transfer</u>
 - SO₂ Control Symposium (starting 1969)
 - Symposia and workshops on multiple pollutants (starting in 1970s)

Regulatory requirements established markets for environmental technologies

E.S. Rubin, Carnegie Mello

U.S. Patenting Activity in SO₂ Control Technology (1880–2000)

Atop an Early SO₂ Absorber

Many of the early flue gas desulfurization (FGD) system designs were complex and costly

E.S. Rubin, Carnegie Mellon

Patenting Activity in NO_x Controls (U.S. Patents, Class-based dataset)

Historical Learning Curves for FGD and SCR Systems

Standard log-linear models fit to data for declining FGD and SCR capital costs

These values reflect the real change in cost of doing the <u>same job</u> at different points in time for the same power plant and fuel specifications

Implications for future cost of carbon capture and storage (CCS)

E.S. Rubin, Carnegie Mello

Cost of CCS for New Coal-Based Plants Using Current Technology

Increase in levelized cost for 90% capture

Incremental Cost of CCS <u>relative to</u> <u>same plant type</u> without CCS (based on bituminous coals)	Supercritical Pulverized Coal Plant	Integrated Gasification Combined Cycle Plant
% Increases in capital cost (\$/kW) and generation cost (\$/kWh)	~ 60–80%	~ 30–50%

• Capture accounts for most (~80%) of the total cost

- Retrofit of existing plants typically has a higher cost
- Added cost to consumers will be much smaller (reflecting the CCS capacity in the generation mix at any given time)

E.S. Rubin, Carnegie Mello

CCS Cost for New NGCC Plants (Current Technology)

Increase in levelized cost for 90% capture

Cost Measure	New NGCC Cost Increase with CCS
% Increase in generation cost (\$/kWh) (relative to NGCC w/o CCS)	~ 30–45%
Cost of CO ₂ Avoided:	
Relative to NGCC:	~\$100 /tCO ₂
Relative to SCPC:	~\$40 /tCO ₂

Ten Ways to Reduce CCS Cost

(inspired by D. Letterman)

- 10. Assume high power plant efficiency
- 9. Assume high-quality fuel properties
- 8. Assume low fuel price
- 7. Assume EOR credits for CO₂ storage
- 6. Omit certain capital costs
- 5. Report \$/ton CO₂ based on short tons
- 4. Assume long plant lifetime
- 3. Assume low interest rate (discount rate)
- 2. Assume high plant utilization (capacity factor)
- 1. Assume all of the above !

... and we have not yet considered the CCS technology!

E.S. Rubin, Carnegie Mellor

Application of Learning Curves to Power Plants with CCS

Seven Steps to Project Future Costs

- Disaggregate plant into major components
- Estimate current plant cost and component contributions
- Select learning rate for each plant component
- Estimate current installed capacity of each component
- Set capacity additions for start and end of learning
- Aggregate component results back to plant level
- Conduct sensitivity analysis on key uncertain variables, e.g.,
 - Starting point for learning curve
 - End point for learning curve
 - Choice of and basis for current capacity data
 - Basis for multi-year cost adjustments
 - Plant cost parameters

Learning Rates for Plants w/ CO₂ Capture

(based on improvements in major plant components)

Projected Reductions in COE after 100 GW of Experience % COE REDUCTION AFTER **100 GW EXPERIENCE** Projected reduction in cost in COE of electricity generation (COE) for each plant type 20 varies by factors of ~2 to 4 tion Projected reductions in CO₂

Projected Cost Reductions in 2050 for Global Energy Scenarios

Cost reductions, 2001–2050, based on energy-economic modeling with endogenous learning curves for power plants with CCS*

Power Plant System	Reduction in Cost of Electricity (\$/MWh)	Reduction in Mitigation Cost (\$/tCO ₂ avoided)
NGCC-CCS	12% – 40%	13% – 60%
IGCC-CCS	22% – 52%	19% – 58%
PC-CCS	14% – 44%	19% – 62%

Learning Curves Can't Pick Winners

- Magnitude of future cost projected using learning curves depends strongly on assumed initial cost
- "Bottom up" engineering-economic analyses offer some insights into cost of new technology designs

www.iecm-online.com

<section-header><text>

Government policies are needed to create market demands for CCS

Policy options that can foster innovation

Direct Gov't Funding of Knowledge Generation Direct or Indirect Support for Commercialization and Production Knowledge Diffusion and Learning Economy-wide, Sector-wide, or Technology-Specific Regs and Standards • R&D contracts with private firms (fully funded or cost- shared) • R&D tax credits • Patents • Production subsidies or tax credit for firms bringing new technologies to market • Education and training • Codification and diffusion of technical knowledge (e.g., via interpretation and) • Codification on Add Dresults; screening; support for databases) • Emissions tax • Codification on Add Dresults; screening; support for databases) • Emissions tax • Codification and Dresults; screening; support for databases • Emission stax • Codification and Dresults; screening; support for databases • Emission stax • Codification on Add Dresults; screening; support for databases • Performance emission rates, • Tox credits, rebates, or payments for yprocurement of new or advanced technologies • Demonstration projects • Loan guarantees • Monetary prizes • Cubicity, persuasion and consumer information • Publicity, persuasion and consumer information	"Technology Policy" Options			Regulatory Policy Options
R&D contracts with private firms (fully funded or cost- shared) Production subsidies or tax credits Production subsidies or tax credit chrisms bringing new technologies to market laboratories R&D contracts with consortia or collaborations Patents Production subsidies or tax credit for firms bringing new technologies to market of purchasers/users of new Govt procurement of new collaborations Patents Production subsidies or tax credits for purchasers/users of new Govt procurement of new collaborations Patents Production subsidies or tax credits for purchasers/users of new Govt procurement of new collaborations Performance Govt procurement of new collaborations Purce of the purchasers/users of new Govt procurement of new collaborations Purce of the purchasers/users of new Govt procurement of new collaborations Purce of the purchasers/users of new Govt procurement of new collaborations Purce of the purchasers/users of new Govt procurement of new collaborations Purce of the purchasers/users of new Govt procurement of new consumer information Purce of the purchasers/users of new Govt procurement of new consumer information Purce of the purchasers/users of new Govt procurement of new Govt proc	Direct Gov't Funding of Knowledge Generation	Direct or Indirect Support for Commercialization and Production	Knowledge Diffusion and Learning	Economy-wide, Sector-wide, or Technology- Specific Regs and Standards
	R&D contracts with private firms (fully funded or cost- shared) Intramural R&D in government laboratories R&D contracts with consortia or collaborations	R&D tax credits Patents Production subsidies or tax credit for firms bringing new technologies to market Tax credits, rebates, or payments for purchasers/users of new technologies Govit procurement of new or advanced technologies Demonstration projects Loan guarantees Monetary prizes	Education and training Codification and diffusion of technical knowledge (e.g., via interpretation and validation of R&D results; screening; support for databases) Technical standards Technology/industry extension program Publicity, persuasion and consumer information	Emissions tax Cap-and-trade program Performance standards (for ensission rates, efficiency, or other measures of performance) Fuels tax Portfolio standards

Conclusions from Learning Curve Studies

• There is significant potential to reduce the cost of CCS ...

but ...

• Realization of that potential will require significant commercial deployment of CCS in addition to sustained R&D

A Final Word of Wisdom

"It's tough to make predictions, especially about the future"

- Yogi Berra

Thank You rubin@cmu.edu