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A b i f i f l i• A brief overview of learning curves

• Application to power plants

• Application to emission control technologies

• Implications for future CCS costs

E.S. Rubin, Carnegie Mellon

Overview of learning curvesOverview of learning curves

E.S. Rubin, Carnegie Mellon

T.P.WrightT.P.Wright (1936) (1936) found that the cost of making found that the cost of making 
airplanes declined with increasing experienceairplanes declined with increasing experience

E.S. Rubin, Carnegie Mellon

“Learning by doing” reduced 
manufacturing costs exponentially
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Learning Curve Concept Later Extended Learning Curve Concept Later Extended 
to Technology “Experience Curves”to Technology “Experience Curves”

Examples of 
Technology 
Cost Trends 

Used to Derive 
Experience 
(Learning)

E.S. Rubin, Carnegie Mellon

(Learning) 
Curves 

The Common (OneThe Common (One--Factor)Factor)
Learning Curve Model Learning Curve Model 

General equation:

where,
Ci = cost to produce the i th unit
Pi = cumulative production or capacity thru period i
b = learning rate exponent

ffi i t ( t t)

Ci = a Pi 
–b

E.S. Rubin, Carnegie Mellon

a = coefficient (constant)

Fractional cost reduction for a doubling of cumulative 
capacity (or production) is defined as the learning rate:           

LR = 1 – 2b

Application to power plantsApplication to power plants

E.S. Rubin, Carnegie Mellon

Literature Review of Learning Rates Literature Review of Learning Rates 
for Power Generation Technologiesfor Power Generation Technologies

• PC plants • Nuclear p
• PC with CCS 
• IGCC plants 
• IGCC with CCS 
• NGCC plants 

Nuc ea
• Hydroelectric
• Geothermal
• On-shore wind
• Off-shore wind

E.S. Rubin, Carnegie Mellon

• NGCC with CCS 
• NG turbines 
• Biomass plants

• Solar PV
• Conc. solar thermal



3

Reported Learning Reported Learning 
Rates for Wind Rates for Wind 
Systems Based         Systems Based         
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Distribution of Reported Distribution of Reported 
Learning Rates for OnLearning Rates for On--Shore WindShore Wind
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Distribution of Reported Learning Distribution of Reported Learning 
Rates for Solar PVRates for Solar PV

Mean     = 22%
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E.S. Rubin, Carnegie Mellon

Source: Azevedo, et al., 2013
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Distribution of Reported Learning Rates Distribution of Reported Learning Rates 
for Gasfor Gas--Fired Power PlantsFired Power Plants
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Range of Reported Learning Rates  Range of Reported Learning Rates  
g g

Number Number 
f t di

Number 
f t di

Range of 
l i t

Range of rates 
f “l i b

Years 
dTechnology  of studies 

reviewed 

of studies 
with one 

factor 

of studies 
with two 
factors 

learning rates 
for “learning by 

doing” (LBD)  

for “learning by 
researching” 

(LBR)  

covered 
across all 

studies 
Coal*

PC  2 2 0 5.6% to 12% 1902-2006
IGCC 1 1 0  2.5% to 7.6% Projections 

Natural Gas* 8 6 2   -11% to 34%  2.38% to 17.7% 1980-1998 
Nuclear 4 4        0 <0 to 6% 1975-1993
Wind (on-shore) 35 29 6  -3% to 32%  10% to 26.8% 1980-2010 
Solar PV 24 22 2  10% to 53% 10% to 18% 1959-2001 
BioPower 

Bi d i 4 4 0 12% t 45% 1971 2006

E.S. Rubin, Carnegie Mellon

Biomass production 4 4 0 12% to 45% 1971-2006
Power generation** 7 7 0  0% to 24% 1976-2005 

Geothermal power 3 0 0 1980-2005 
Hydropower 3 0 2  0.48% to 11.4%  2.63% to 20.6% 1980-2001 

              

*Does not include plants with CCS.   **Includes combined heat and power (CHP) and biodigesters. 

Source: Azevedo, et al., 2013

Application to emission Application to emission 
control technologiescontrol technologies

E.S. Rubin, Carnegie Mellon

Early Trends in Amine System Early Trends in Amine System 
Performance and Cost MeasuresPerformance and Cost Measures

Decreasing trend of MEA 
regeneration heat reqm’t.

Estimates from cost studies, not actual projects

E.S. Rubin, Carnegie Mellon

Capital cost estimates for an amine system at a 
500 MW coal-fired plant (on a gross power basis)

Source: Yeh & Rubin, 2012

What can be learned from the history 
of other pollution control systems?



5

U.S. Government Actions Affecting U.S. Government Actions Affecting 
SOSO22 and NOand NOxx Control Control TechnologyTechnology

• Legislation / Regulation
– Clean Air Act Amendments of 1970, 1977, 1990
– New Source Performance Standards of 1971, 1979, 1992

• R&D Funding / Financial Incentives
– EPA multi-million $ research budget in 1970s
– DOE Clean Coal Technology Program (since 1985) 

• Facilitating Technology Transfer

E.S. Rubin, Carnegie Mellon

– SO2 Control Symposium (starting 1969)
– Symposia and workshops on multiple pollutants                   

(starting in 1970s)

Regulatory requirements established 
markets for environmental technologies

U.S. Patenting Activity in 
SO2 Control Technology (1880–2000)
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Many of the 
early flue gas 
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complex and 

l
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costly

Unit 1 FGD system, Bruce 
Mansfield Power Station

E.S. Rubin, Carnegie Mellon
E.S. Rubin, Carnegie Mellon
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Adoption of FGD TechnologyAdoption of FGD Technology
(Coal(Coal--Fired Power Plants)Fired Power Plants)
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Trend Trend of FGD Capital Costof FGD Capital Cost
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Patenting Activity in NOx Controls 
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CAA

40
60
80

100
120
140
160
180
200
220

m
be

r 
of

 P
at

en
ts

 F
ile

d

CAA

All Methods of
NOx Removal

E.S. Rubin, Carnegie Mellon

0
20
40

18
73

18
79

18
85

18
91

18
97

19
03

19
09

19
15

19
21

19
27

19
33

19
39

19
45

19
51

19
57

19
63

19
69

19
75

19
81

19
87

19
93

19
99

Year Patent Filed

N
um



7

Patenting Activity in 
Post-Combustion NOx Controls 
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Worldwide Installed Capacity at Coal-Fired 
Utility Plant (GWe)

NThese values reflect the real 
change in cost of doing the 
same job at different points in 
time for the same power plant 
and fuel specifications

Cost reductions of 12% per 
doubling of installed capacity

(~ 50% reduction in 20 years)

I li ti f f t t fI li ti f f t t fImplications for future cost of Implications for future cost of 
carbon capture and storage carbon capture and storage 

(CCS)(CCS)

E.S. Rubin, Carnegie Mellon
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Cost Cost of CCS for New Coalof CCS for New Coal--Based Plants Based Plants 
Using Current TechnologyUsing Current Technology

Increase in levelized cost for 90% capture

Incremental Cost of CCS relative to relative to 
same plant typesame plant type without CCS         
(based on bituminous coals)

Supercritical 
Pulverized 
Coal Plant  

Integrated 
Gasification 
Combined 
Cycle Plant 

% Increases in capital cost ($/kW)    
and generation cost ($/kWh)

~ 60–80% ~ 30–50%

E.S. Rubin, Carnegie Mellon

• Capture accounts for most (~80%) of the total cost
• Retrofit of existing plants typically has a higher cost

• Added cost to consumers will be much smaller
(reflecting the CCS capacity in the generation mix at any given time)

CCS Cost CCS Cost for New NGCC Plants for New NGCC Plants 
(Current Technology)(Current Technology)

Increase in levelized cost for 90% capture

Cost Measure
New NGCC 

Cost Increase  
with CCS  

% Increase in generation cost ($/kWh)
(relative to NGCC w/o CCS)

~ 30–45%

Cost of CO2 Avoided:
R l ti t NGCC $100 /tCO

Increase in levelized cost for 90% capture

E.S. Rubin, Carnegie Mellon

Relative to NGCC:
Relative to SCPC:

~$100 /tCO2

~$40 /tCO2

Ten Ways to Reduce CCS Cost Ten Ways to Reduce CCS Cost 
(inspired by D. Letterman)(inspired by D. Letterman)

10.   Assume high power plant efficiency 
9 A hi h li f l i9.   Assume high-quality fuel properties
8.   Assume low fuel price
7.   Assume EOR credits for CO2 storage
6.   Omit certain capital costs
5.   Report $/ton CO2 based on short tons
4.   Assume long plant lifetime

E.S. Rubin, Carnegie Mellon

3.   Assume low interest rate (discount rate)
2.   Assume high plant utilization (capacity factor)
1.   Assume all of the above !

. . . and we have not yet considered the CCS technology!

Application of Learning Curves Application of Learning Curves 
to Power Plants with CCSto Power Plants with CCS
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Seven Steps to Project Future CostsSeven Steps to Project Future Costs
• Disaggregate plant into major components
• Estimate current plant cost and component contributions
• Select learning rate for each plant component
• Estimate current installed capacity of each component
• Set capacity additions for start and end of learning
• Aggregate component results back to plant level

E.S. Rubin, Carnegie Mellon

• Conduct sensitivity analysis on key uncertain variables, e.g.,
– Starting point for learning curve
– End point for learning curve
– Choice of and basis for current capacity data
– Basis for multi-year cost adjustments
– Plant cost parameters

Learning Rates for Plants w/ COLearning Rates for Plants w/ CO22 Capture Capture 
(based on improvements in major plant components)(based on improvements in major plant components)
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Cost reductions, 2001–2050, based on energy-economic modeling

Projected Cost Reductions in 2050 Projected Cost Reductions in 2050 
for Global Energy Scenariosfor Global Energy Scenarios

Cost reductions, 2001 2050, based on energy economic modeling 
with endogenous learning curves for power plants with CCS*

Power Plant 
System  

Reduction in 
Cost of 

Electricity 
($/MWh)

Reduction in 
Mitigation Cost 
($/tCO2 avoided) 

NGCC–CCS 12% – 40% 13% – 60%

E.S. Rubin, Carnegie Mellon

IGCC–CCS 22% – 52% 19% – 58%

PC–CCS 14% – 44% 19% – 62%

* Range based on low and high global carbon price scenarios.

Source: van der Brock et al, 2010
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Which COWhich CO22 capture technologies capture technologies 
will have the lowest cost?  will have the lowest cost?  

R&D Programs Seek to Develop Lower-Cost Technologies 
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Learning Curves Can’t Pick WinnersLearning Curves Can’t Pick Winners

• Magnitude of future cost projected using learning ag tude o utu e cost p ojected us g ea g
curves depends strongly on assumed initial cost

• “Bottom up” engineering-economic analyses offer 
some insights into cost of new technology designs
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The Linear Model of Technological Change

Can R&D Alone Achieve the Can R&D Alone Achieve the 
Big Cost Reductions We Seek?Big Cost Reductions We Seek?

g g

Invention Adoption DiffusionInnovation

E.S. Rubin, Carnegie Mellon

A More Realistic ModelA More Realistic Model

Invention
Adoption

(limited use of
early designs)

Diffusion
(improvement & 
widespread use)

Innovation 
(new or better

product)
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Learning
By Doing

Learning
By Using

R&D

Deployment of new technology is required to achieve biggest cost reductions
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Government policies are needed to Government policies are needed to 
create market demands for CCScreate market demands for CCS

Policy options that can foster innovation  Policy options that can foster innovation  
“Technology Policy” Options 

Direct Gov’t Funding of 
Knowledge Generation 

Direct or Indirect Support for 
Commercialization and Production 

Knowledge Diffusion and 
Learning 

 R&D contracts with 
private firms (fully 
funded or cost- 
shared) 
I t l R&D i

 R&D tax credits 
 Patents 
 Production subsidies or tax credit 

for firms bringing new 

 Education and training 
 Codification and diffusion 

of technical knowledge 
(e.g., via interpretation and 

lid ti f R&D lt

Regulatory 
Policy Options 

Economy-wide, 
Sector-wide, or 
Technology- Specific 
Regs and Standards 

 Emissions tax 
 Cap-and-trade 

program 
 Performance 

E.S. Rubin, Carnegie Mellon

 Intramural R&D in 
government 
laboratories 

 R&D contracts with 
consortia or 
collaborations 

technologies to market 
 Tax credits, rebates, or payments 

for purchasers/users of new 
technologies 

 Gov’t procurement of new or 
advanced technologies 

 Demonstration projects 
 Loan guarantees 
 Monetary prizes  

validation of R&D results; 
screening; support for 
databases) 

 Technical standards 
 Technology/Industry 

extension program 
 Publicity, persuasion and 

consumer information  

standards (for 
emission rates, 
efficiency, or other 
measures of 
performance) 

 Fuels tax 
 Portfolio standards  

Source: NRC, 2010

Conclusions from Conclusions from 
Learning Curve StudiesLearning Curve Studies

• There is significant potential to reduce the 
cost of CCS …  

but …

• Realization of that potential will require 
i ifi t i l d l t f CCS

E.S. Rubin, Carnegie Mellon

significant commercial deployment of CCS 
in addition to sustained R&D

A Final Word of WisdomA Final Word of Wisdom

“It’s tough to make predictions, 
especially about the future”

- Yogi Berra

E.S. Rubin, Carnegie Mellon

Thank YouThank You
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