Global Outlook for Coal-Based Power Generation: Implications for Developing Countries

Edward S. Rubin
Department of Engineering and Public Policy
Department of Mechanical Engineering
Carnegie Mellon University
Pittsburgh, Pennsylvania

Presentation to the World Bank Conference
Energy Week 2009: Energy, Development and Climate Change
Washington, DC
April 1, 2009

Outline of Talk

- Global energy demand, coal use and CO$_2$ emissions
- The needs of climate change mitigation
- Past trends in “clean coal technology”
- Status and outlook for CO$_2$ capture & storage (CCS)
- The role of CCS in developing countries
Outlook for World Energy Use
(reference case scenario)

Source: USDOE-EIA, 2008

50% increase

World Electricity Generation
(reference case scenario)

Source: USDOE-EIA, 2008

E.S. Rubin, Carnegie Mellon
World Coal Consumption
(reference case scenario)

Source: USDOE-EIA, 2008

CO₂ Emissions from Coal Combustion
(reference case scenario)

Source: USDOE-EIA, 2008
Avoiding Serious Climate Impacts Requires Large Reductions in CO₂

The most recent IPCC assessment indicates potentially serious impacts for more that a 2°C rise in average global temperature

<table>
<thead>
<tr>
<th>Atmospheric stabilization CO₂-equiv (ppm) (2005=375 ppm)</th>
<th>Global avg. temperature increase over pre-industrial</th>
<th>Required year for peak global CO₂ emissions</th>
<th>Required change in global CO₂ emissions from 2000 to 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>445 – 490</td>
<td>2.0 – 2.4 °C</td>
<td>2000–2015</td>
<td>-85% to -50%</td>
</tr>
<tr>
<td>535 – 590</td>
<td>2.8 – 3.2 °C</td>
<td>2010–2030</td>
<td>-30% to +5%</td>
</tr>
<tr>
<td>710 – 855</td>
<td>4.0 – 4.9 °C</td>
<td>2050–2080</td>
<td>+25% to +85%</td>
</tr>
</tbody>
</table>

Source: IPCC, 2007

Lower stabilization levels require earlier action to reduce emissions

The Potential of Clean Coal Technology

- The term “clean coal technology” was coined in the 1980’s to describe new PC and IGCC power plants with low levels of particulate, SO₂ and NOₓ emissions
- Here are the trends for new U.S. power plants:
The Potential of Clean Coal Technology (2)

- Increasingly, “clean coal” also means low emissions of CO\textsubscript{2}—both from improved power plant efficiency (e.g., use of supercritical vs. subcritical boilers), and also from the use of CO\textsubscript{2} capture and storage (CCS).

CCS is a key element of cost-effective global energy strategies

Source: IPCC, 2007
Key Messages

• Coal-based power plants will continue to provide the major share of electricity demand for decades to come, especially in emerging economies
• Large reductions in CO₂ emissions from coal plants are needed to avoid serious impacts of climate change
• Only CCS has promise to reconcile continued use of coal with climate change mitigation

Status of CCS Technology

• CO₂ capture technologies are commercial and widely used in industrial processes, mainly in the petroleum and petrochemical industries (e.g., for ammonia production and processing of natural gas)
• CO₂ capture also has been applied to several gas-fired and coal-fired boilers (to produce commodity CO₂ for sale), but at scales that are small compared to a large modern power plant
• Integration of CO₂ capture, transport and geologic sequestration has been demonstrated in several industrial applications, but not yet at an electric power plant
Three Current CCS Projects

- Weyburn (Canada)
- Sleipner (Norway)
- In Salah (Algeria)

Estimated Increase in New Plant Costs with Current CCS Technology

<table>
<thead>
<tr>
<th>Incremental Cost of CCS Relative to a Similar Plant without CCS based on bituminous coals</th>
<th>Supercritical Pulverized Coal Plant</th>
<th>Integrated Gasification Combined Cycle Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase in capital cost ($/kW) and total generation cost ($/MWh) (w/ deep aquifer storage)</td>
<td>~ 70%</td>
<td>~ 40%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost of CO₂ avoided (US costs)</th>
<th>~ $70 /tCO₂</th>
<th>~ $40 /tCO₂*</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Deep aquifer storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Enhanced oil recovery + storage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* ~$55/t relative to a SCPC plant. Different choices of reference plant have different avoidance costs.

Source: Based on IPCC, 2005; Rubin et al, 2007; DOE, 2007

Costs vary widely for different assumptions and circumstances
Barriers to CCS Deployment

- No requirement for large reductions in CO₂ emissions
- High cost of current technology
- Lack of experience in power plant applications
- Lack of regulations for large-scale geological sequestration
- Unresolved legal issues (e.g., long-term liabilities)
- Uncertainties about public acceptance

These barriers do not apply in all countries

Full-Scale Projects Are Needed to...

- Establish the *reliability* and true cost of CCS in commercial power plant applications
 - For different technologies, coal types, and geological settings
- Help establish legal and regulatory requirements for geological sequestration at large scales
- Reduce future cost of CCS via learning-by-doing plus sustained R&D
Potential Cost Reductions for CCS

Many Government Programs and Public-Private Partnerships Are Already In Place

Some of the government programs supporting CCS:

- Australia
- Canada
- China
- European Union
- United Kingdom
- United States

Funding levels and scale of projects vary widely
Current Activity

A variety of CCS projects are proposed or planned in different parts of the world.

Project Name

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Location</th>
<th>Feedstock</th>
<th>Size MW</th>
<th>Capture Process</th>
<th>CO2 Fate</th>
<th>Start-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Laxi</td>
<td>France</td>
<td>Oil</td>
<td>35</td>
<td>Day</td>
<td>Seq</td>
<td>2009</td>
</tr>
<tr>
<td>Southern Completion</td>
<td>Germany</td>
<td>Coal</td>
<td>30/300/1000</td>
<td>Day</td>
<td>Undecided</td>
<td>2009</td>
</tr>
<tr>
<td>AGP Emsland Moorsbiener</td>
<td>USA</td>
<td>Coal</td>
<td>50</td>
<td>Post</td>
<td>Seq</td>
<td>2009</td>
</tr>
<tr>
<td>Columbia Oxy Fuel</td>
<td>Australia</td>
<td>Coal</td>
<td>75</td>
<td>Day</td>
<td>Seq</td>
<td>2009</td>
</tr>
<tr>
<td>GreenGen</td>
<td>China</td>
<td>Coal</td>
<td>25/300</td>
<td>Pre</td>
<td>Seq</td>
<td>2009</td>
</tr>
<tr>
<td>Homemade</td>
<td>USA</td>
<td>Coal</td>
<td>450</td>
<td>Post</td>
<td>Dec</td>
<td>2004-10</td>
</tr>
<tr>
<td>NSC</td>
<td>China</td>
<td>Coal</td>
<td>Undecided</td>
<td>Undecided</td>
<td>Seq</td>
<td>2010</td>
</tr>
<tr>
<td>60th Milestone</td>
<td>UK</td>
<td>Coal</td>
<td>500</td>
<td>Post</td>
<td>Seq</td>
<td>2011</td>
</tr>
<tr>
<td>AGP Alaskan Northwestern</td>
<td>USA</td>
<td>Coal</td>
<td>200</td>
<td>Post</td>
<td>Dec</td>
<td>2011</td>
</tr>
<tr>
<td>Jangsz House</td>
<td>Norway</td>
<td>Coal</td>
<td>450</td>
<td>Post</td>
<td>Dec</td>
<td>2011</td>
</tr>
<tr>
<td>Scottish IS E Fawbridge</td>
<td>UK</td>
<td>Coal</td>
<td>500</td>
<td>Post</td>
<td>Seq</td>
<td>2011-2012</td>
</tr>
<tr>
<td>Innoshill Kinzie</td>
<td>Norway</td>
<td>Gas</td>
<td>430</td>
<td>Post</td>
<td>Undecided</td>
<td>2011-2012</td>
</tr>
<tr>
<td>Fossland</td>
<td>Australia</td>
<td>Coal</td>
<td>160</td>
<td>Pre</td>
<td>Seq</td>
<td>2012</td>
</tr>
<tr>
<td>Southworth</td>
<td>USA</td>
<td>Coal</td>
<td>120</td>
<td>Post</td>
<td>Dec</td>
<td>2012</td>
</tr>
<tr>
<td>Fiscalis Energy</td>
<td>USA</td>
<td>Coal</td>
<td>430/700</td>
<td>Pre</td>
<td>Seq</td>
<td>2012</td>
</tr>
<tr>
<td>NECS sugar Tribury</td>
<td>UK</td>
<td>Coal</td>
<td>469</td>
<td>Post</td>
<td>Seq</td>
<td>2013</td>
</tr>
<tr>
<td>Fawbridge</td>
<td>USA</td>
<td>Coal</td>
<td>500</td>
<td>Post</td>
<td>Dec</td>
<td>2014</td>
</tr>
<tr>
<td>AT Rio Tinto Innovation</td>
<td>Australia</td>
<td>Coal</td>
<td>300</td>
<td>Pre</td>
<td>Seq</td>
<td>2014</td>
</tr>
<tr>
<td>Co2 Hub project</td>
<td>UK</td>
<td>Coal</td>
<td>200/450</td>
<td>Post</td>
<td>Seq</td>
<td>2014</td>
</tr>
<tr>
<td>Salt Spring</td>
<td>Norway</td>
<td>Gas</td>
<td>620+800</td>
<td>Pre</td>
<td>Seq</td>
<td>2015</td>
</tr>
<tr>
<td>RWE Zero CO2</td>
<td>Germany</td>
<td>Coal</td>
<td>450</td>
<td>Pre</td>
<td>Seq</td>
<td>2015</td>
</tr>
<tr>
<td>Karmisch Energy</td>
<td>Australia</td>
<td>Coal</td>
<td>63 x 1440</td>
<td>Pre</td>
<td>Seq</td>
<td>2016</td>
</tr>
<tr>
<td>Shawal Interim</td>
<td>Iraq</td>
<td>Coal</td>
<td>900</td>
<td>Post</td>
<td>Dec</td>
<td>Undecided</td>
</tr>
<tr>
<td>CGO Sharjah-Stead</td>
<td>USA</td>
<td>Coal</td>
<td>150</td>
<td>Day</td>
<td>Dec</td>
<td>Undecided</td>
</tr>
<tr>
<td>Condon Project</td>
<td>Canada</td>
<td>Coal/Peas</td>
<td>900</td>
<td>Pre</td>
<td>Undecided</td>
<td></td>
</tr>
<tr>
<td>ZLNG Rozwia</td>
<td>Norway</td>
<td>Gas</td>
<td>50-70</td>
<td>Day</td>
<td>Undecided</td>
<td></td>
</tr>
<tr>
<td>Vinnahusness</td>
<td>Sweden</td>
<td>Oil</td>
<td>5</td>
<td>Post</td>
<td>Undecided</td>
<td></td>
</tr>
</tbody>
</table>

Source: MIT, 2008

Existing/Proposed CO2 Storage Sites

- **Sites currently injecting CO2**
- **Planned CCS sites (at least 700,000 t CO2/yr)**
- **Sites which have been cancelled or have completed injection**
The GreenGen Project
(Tianjin, China)

Financing large-scale CCS projects has been a major hurdle

Options for financing early CCS projects (in U.S. and other industrial countries):

- Expand traditional “technology policy” options (e.g., tax credits, loans, subsidies, etc.)
- Adopt sufficiently stringency cap-and-trade program w/ CCS bonus allowances and/or a tech. fund (e.g., from auction of allowances)
- Establish a CCS Trust Fund with fees used to pay full added cost of early CCS projects
- Set new regulations requiring CCS
CCS and Developing Countries

• CCS projects in developing countries can contribute significantly to the worldwide need for large-scale demonstrations at coal-based power plants

• Current government and industry programs need to aggressively pursue additional options to raise roughly $1–2 billion/yr to support early CCS projects

• The World Bank potentially can contribute to this effort, in conjunction with other international programs, via its Clean Technology Fund and other mechanisms

• The sooner countries take action, the better our chances of avoiding serious impacts of global climate change

Thank You

rubin@cmu.edu