CO₂ CONTROL TECHNOLOGY EFFECTS ON IGCC PLANT PERFORMANCE AND COST

Chao Chen, Edward S. Rubin and Michael Berkenpas

Department of Engineering and Public Policy Carnegie Mellon University

23rd International Pittsburgh Coal Conference Pittsburgh, Pennsylvania September 27, 2006

Motivation

No generally available process models that can be easily used or modified to study IGCC with CO₂ capture for different assumptions and technology selections

Uncertainties in performance and cost are also seldom considered

Research Objectives

- Provide a method and tools for systematic comparison of IGCC system with and without CO₂ capture
- Investigate factors influencing IGCC systems with CO₂ capture
- Describe key uncertainties in performances and costs of IGCC systems with CO₂ capture

The IECM

- A desktop computer model developed for DOE/NETL
- Provides preliminary design estimates of performance, emissions, costs and uncertainties:
 - PC, NGCC and IGCC plants
 Emission control systems
 CO₂ capture and storage options (pre- and post-combustion, oxy-combustion, transport, storage)
- Roughly 1000 users worldwide

The Integrated Environmental Control Model (IECM)

Free Web Download :
 www. iecm-online.com

Technical Support:
 <u>PED.modeling@netl.doe.gov</u>

Integrated Environmental Control Model

Carbon Sequestration Edition

IGCC with CO₂ Capture

Modeling Approach for IGCC Systems

Design Assumption for IGCC Power Plant Case Studies

Parameter	Value			
GE quench gasifier	2 or 1 operating plus one spare			
Gas turbine	GE 7FA (2 or 1 turbines)			
Steam cycle (HRSG)	1400 psi/1000°F/1000°F			
Design ambient conditions	59 °F/14.7 psia			
Capacity factor	75%			
Fixed charge factor	14.8%			
Cost year	2002			
For CO ₂ capture plant				
Overall CO₂ capture efficiency	90%			
CO ₂ product pressure	2100 psia			
CO_2 transport and storage cost	10 \$/tonne CO ₂			

Effects of CO₂ capture (Pittsburgh #8 coal)

	TCR (\$/kW)	COE (\$/MWh)	Thermal efficiency (HHV)	Net power (MW)	CO ₂ emission (kg/kWh)
Reference plant	1312	48.4	37.1%	538	0.82
Capture plant	1714	69.9	32.0%	502	0.10
Change %	30.6%	44.4%	-16.0%	-6.7%	-87.8%

Effects of Coal Composition

Coal type	Pittsburgh #8	Illinois #6	Wyoming PRB	ND Lignite
Coal rank	Bituminous	Bituminous	Sub-bituminous	Lignite
HHV (Btu/lb)	13,260	10,900	8,340	6,020
Total water in slurry	34%	37%	44%	50%

(Source: EPRI)

Effect of Coal Quality on Efficiency

Effect of Coal Quality on Total Capital Reqm't (TCR) and Cost of Electricity (COE)

Coal price ratios based on minemouth prices: Pitts #8: Illinois #6: PRB: Lignite = 1.0: 0.67: 0.2: 0.26 $CO_2 \text{ capture efficiency} = \frac{CO_2 \text{ captured(mole)}}{Total \text{ carbon in syngas from gasifier(mole)}}$

$$CO_2 \text{ Avoidance Cost} = \frac{COE_{cap} - COE_{ref}}{(CO_2 / kWh)_{ref} - (CO_2 / kWh)_{cap}}$$

Energy Penalty (EP) = $\frac{\text{Re } f. \text{ plant eff.} - Cap. \text{ plant eff.}}{\text{Re } f. \text{ plant eff.}}$

Effect of Capture Efficiency on Energy Penalty and TCR

(Pittsburgh #8 coal, Reference plant net power output: 267 MW)

Effect of Capture Efficiency on COE and Avoidance Cost (Pittsburgh #8 coal, Reference plant net power output: 267 MW)

Preliminary Uncertainty Analysis

Probability distributions assigned to:

- Basic IGCC process
 - Component capital costs
 - Indirect costs (e.g., process contingencies)
 - Fixed and variable O&M costs
- CO₂ capture technologies
 WGS and Selexol performance
 WGS and Selexol capital cost
 WGS and Selexol O&M cost

Distribution Functions for Capture Processes

		Nominal	
Model parameter	Unit	value	Distribution function
Mole weight of Selexol	lb/mole	280	Triangular(265,280,285)
Pressure at flash tank 1	Psia	60	Uniform(40,75)
Pressure at flash tank 2	Psia	20	Uniform(14.7,25)
Pressure at flash tank 3	Psia	7	Uniform(4,11)
Power recovery turbine efficiency	%	75	Uniform(70,80)
Selexol pump efficiency	%	75	Uniform(70,80)
Recycle gas compressor efficiency	%	75	Uniform(70,80)
CO ₂ compressor efficiency	⁰∕₀	79	Triangular(75,79,85)
Cost parameter	Unit	Value	Distribution function
WGS catalyst cost	\$/ft^3	250	Triangular(220,250,290)
Selexol solvent cost	\$/lb	1.96	Triangular(1.32,1.96,2.9)
Process contingency of WGS system	% of PFC	5	Triangular(2,5,10)
Selexol process contingency system	% of PFC	10	Triangular(5,10,20)
Maintenance cost of WGS system	% of PFC	2	Triangular (1, 2, 5)
Maintenance cost of Selexol system	% of PFC	2	Triangular(1,2,5)

CDF of Capture Plant TCR

(Pittsburgh #8 coal, Net power output: 502 MW)

Advanced IGCC Technology

Advanced gasifier

- Higher efficiency, reliability, and operating pressure
- Advanced air separation unit (ASU)
 - High thermal integration with IGCC system

Syngas cleanup process

- Less expensive particulate removal systems or hot gas filtration
- Advanced gas turbines

- Higher efficiency and capacity to burn syngas and hydrogen-rich fuels

Optimal integration of new technologies and components

Efficiency and Cost of Electricity for Advanced Plant Designs

Conclusions

- Many factors affect the performance and cost of an IGCC with CCS:
 - Coal rank has a strong influence on performance and cost with or without CCS. Higher rank coals are preferred for the systems analyzed here
 - Current case studies show that with a Selexol-based CO₂ capture process, CO₂ avoidance cost is lowest when the total CO₂ removal efficiency is in the range of 85%~90%

Conclusions (con't)

- Most of the uncertainty in capital cost of an IGCC capture plant comes from the IGCC process rather than the capture process
 Expected advances in oxygen production and gas turbine technologies can greatly improve the
 - performance and cost of IGCC systems with CCS