Analyzing Power Plant Strategies for Carbon Capture

Edward S. Rubin
Department of Engineering and Public Policy
Carnegie Mellon University
Pittsburgh, Pennsylvania

Carnegie Mellon Electricity Industry Center Advisory Committee
Pittsburgh, Pennsylvania
October 25, 2004

Objectives

• Compare the performance and cost of current fossil fuel power systems with and without CO₂ capture and storage (CCS)
 • Pulverized coal combustion (PC)
 • Integrated coal gasification combined cycle (IGCC)
 • Natural gas combined cycle (NGCC)
• Characterize and quantify the major resource requirements and multi-media environmental emissions associated with these systems
Recent CO₂ Capture Cost Estimates
(includes compression, but excludes transport & storage costs)

Cost of Electricity ($/MWh)

Reference Plant with Capture

Natural gas cost = $2-3/GJ; coal cost approx. $1-2/GJ. IGCC data for bituminous coals only. Other assumptions vary.
What’s New Here?

• For cost comparisons, we explore a broader range of assumptions/conditions that influence the cost of these technologies (with and without capture)
• We include CO₂ transport and storage costs
• We highlight the implications of CCS energy requirements on plant-level resource consumption and ancillary environmental impacts
• We use the (publicly available) IECM computer model (Version 4.0.4) to evaluate all three systems

Results for Baseline Case Study Assumptions

(500 MW, 75% CF, Pgh#8 Coal, $4/GJ Gas)
CO₂ Emission Rates (kg/MWh)

Cost of Electricity (COE)
(Levelized $/MWh)
Effects of Fuel Price and Plant Dispatch

Recent Trends for Natural Gas Price and NGCC Plant Utilization
Cost of Electricity, Revisited
(Levelized $/MWh)

Differences in Total Variable Operating Cost w/ CCS ($/MWh)
(Includes fuel, chemicals, utilities, wastes and byproducts)

<table>
<thead>
<tr>
<th>Plant</th>
<th>Fuel Price</th>
<th>CCS Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>$1.2/ GJ</td>
<td>(Base case)</td>
</tr>
<tr>
<td>IGCC</td>
<td>$1.2/ GJ</td>
<td>– 9</td>
</tr>
<tr>
<td>NGCC</td>
<td>$2.2/ GJ</td>
<td>– 7</td>
</tr>
<tr>
<td></td>
<td>$4.0/ GJ</td>
<td>+ 8</td>
</tr>
<tr>
<td></td>
<td>$5.8/ GJ</td>
<td>+24</td>
</tr>
</tbody>
</table>

Implication: Increasing dispatch of IGCC, and less use of NGCC, when CCS is added
Cost of Electricity ($/MWh) w/ Differential Capacity Factors

- Gas @ $4.0/GJ
- + capture
- + transport & storage

<table>
<thead>
<tr>
<th>Type</th>
<th>PC</th>
<th>IGCC</th>
<th>NGCC</th>
<th>PC</th>
<th>IGCC</th>
<th>NGCC</th>
<th>PC</th>
<th>IGCC</th>
<th>NGCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF=75%</td>
<td>62</td>
<td>64</td>
<td>62</td>
<td>74</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>CF=85%</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>CF=50%</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td>82</td>
<td>82</td>
</tr>
</tbody>
</table>

Baseline Case: CF = 75% (all plants)

Effects of IGCC
Financing & Operation
IGCC — Can You Build It?
Two New Scenarios

- **“Unfavorable” Case**
 - Risk premium on financing (FCF=17.3%)
 - Lower plant utilization (CF=65%)

- **“Favorable” Case**
 - Risk sharing by 3rd parties (FCF=10.4%)
 - Higher plant utilization (CF=85%)

Cost of Electricity ($/MWh) for Two New IGCC Scenarios

![Cost of Electricity Chart]

- Steps = Baseline + FCF + CF

Unfavorable
- Ref. Plant: 48, 54, 61, 70, 78, 86
- CCS Plant: 48, 39, 35, 70, 57, 52

Favorable
- Ref. Plant: 48, 39, 35, 70, 57, 52
- CCS Plant: 48, 39, 35, 70, 57, 52

Carnegie Mellon / CEIC
CCS Energy Penalty Impacts on Resource Consumption and Multi-media Emissions

• We define the CCS energy requirement as the increase in energy input per unit of product output.

• This measure directly affects the plant resource requirements and environmental emissions per kWh generated:
 - Plant fuel consumption
 - Other resource requirements
 - Solid and liquid wastes
 - Air pollutants not captured by CCS
 - Upstream (life cycle) impacts

• For case study plants, energy input increases by:
 - PC = 31%; IGCC = 16%; NGCC = 18%
Case Study Increases in Fuel and Reagent Consumption

Increases in Coal and Natural Gas Consumption

- PC
- IGCC
- NGCC

Increases in Ammonia Consumption

- PC
- IGCC
- NGCC

Increase in Limestone Consumption

- PC
- IGCC
- NGCC

Case Study Increases in Solid Wastes & Plant Byproducts

Increases in Ash or Slag Residues

- PC
- IGCC

Increases in Desulfurization System Residues

- PC
- IGCC
- NGCC
Case Study Increases in Air Emission Rates

Conclusions from Case Studies

- Many of the key factors and inter-dependencies affecting CO₂ capture costs for fossil fuel power systems have not been considered in past studies; their inclusion can significantly alter the outlook for competing options.

- Current CO₂ capture systems can significantly exacerbate the multi-media environmental impacts and resources required to produce useful products like electricity.

- Minimizing CCS energy requirements is essential for minimizing these adverse impacts.
The Critical Importance of Technology Innovation

- New or improved technologies for power generation and CO$_2$ capture can lower the cost of CCS, and significantly reduce adverse secondary impacts by:
 - Improving overall plant efficiency
 - Reducing CCS energy requirements
 - Maximizing co-capture of other pollutants

Work in Progress at CMU

- **Incorporate performance and cost models of advanced power systems and CO$_2$ capture options:**
 - Oxyfuel combustion
 - ITM oxygen production
 - Advanced IGCC designs
 - Advanced NGCC

- **Expand and regionalize transport & storage models**

- **Comparative analyses of CO$_2$ capture options for new and existing power plants**
 - Advanced PC, NGCC and IGCC systems
 - Repowering or rebuild of existing units

- **Assessments of R&D Benefits**
The IECM is Available At . . .

• Free Web Download:
 • www.iecm-online.com

• Technical Support:
 • PED.modeling@netl.doe.gov

• Other Inquiries:
 • mikeb@cmu.edu
 • rubin@cmu.edu