Coal Gasification
and the Meaning of Life

Edward S. Rubin
Department of Engineering and Public Policy
Carnegie Mellon University
Pittsburgh, Pennsylvania

Carnegie Mellon Electricity Industry Center Seminar

April 22, 2003
Outline of Talk

• What is coal gasification?
• How does it work?
• Why the interest?
• Where does it stand?
• Where is it headed?
What is Coal?

<table>
<thead>
<tr>
<th></th>
<th>Bituminous (Ill.#6)</th>
<th>Subbituminous (PRB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon (wt%)</td>
<td>61.2</td>
<td>47.9</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>4.20</td>
<td>3.40</td>
</tr>
<tr>
<td>Oxygen</td>
<td>6.02</td>
<td>10.8</td>
</tr>
<tr>
<td>Sulfur</td>
<td>3.25</td>
<td>0.48</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1.16</td>
<td>0.62</td>
</tr>
<tr>
<td>Chlorine</td>
<td>0.17</td>
<td>0.03</td>
</tr>
<tr>
<td>Ash</td>
<td>11.0</td>
<td>6.40</td>
</tr>
<tr>
<td>Moisture</td>
<td>13.0</td>
<td>30.4</td>
</tr>
<tr>
<td>Mercury (ppm,dry)</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>HHV (Btu/lb)</td>
<td>10,900</td>
<td>8,335</td>
</tr>
</tbody>
</table>
Coal vs. Other Fossil Fuels

COAL \(\text{C:H} \sim 1:1 \) \(C \) \(H \) + \(H \) = *synthetic oil*

+ \(H \) \(H \) = *synthetic NG*

PETROLEUM \(\text{C:H} \sim 1:2 \) \(C \) \(H \) \(H \)

NATURAL GAS \(\text{C:H} \sim 1:4 \) \(C \) \(H \) \(H \) \(H \)
What Is Gasification?

- Gasification is a process that converts carbonaceous materials, such as fossil fuels and biomass, into mixtures of hydrogen and carbon monoxide (called synthesis gas, or syngas).
- Other gaseous species also are formed in varying amounts, depending on the fuel composition and process conditions.
- The syngas can be burned as a fuel, or processed to produce chemicals and other fuels.
- While the focus of this talk is on coal gasification, an important attraction of this technology is that it can process other materials besides coal.
Gasification Basics

- Coal gasification must be carried out at high temperature (and pressure, usually) to first decompose the coal then create new products (via addition of hydrogen)
- The source of heat for these reactions is the *partial oxidation* (combustion) of the coal (requiring some addition of oxygen)
- The most abundant source of hydrogen is water (H₂O), added either as a liquid or vapor (steam)
- The source of oxygen is either air or nearly-pure oxygen (supplied by an air separation unit)
A Typical Coal Gasifier

Coal
- %C, H, S, O, N, Cl
- %Ash

Hydrogen
- H₂O

Oxygen
- Air or O₂

Syngas (raw)
- % CO
- % H₂
- % CO₂
- % H₂O
- % CH₄
- % COS
- % H₂S
- % HCl
- % NH₃
- % N₂
- % Ash

Slag
Gasification processes use one or more common reactions:

- **Thermal decomposition**
 \[HC + \text{heat} = H_2 + C + \text{organics} \]

- **Reaction with oxygen (partial oxidation)**
 \[HC + O = H_2 + CO + \text{heat} \]

- **Reaction with steam (reforming)**
 \[HC + H_2O + \text{heat} = 3/2H_2 + CO \]

- **Reaction with hydrogen (hydrogasification)**
 \[HC + H_2 = CH_4 + \text{heat} \]
Uses of Syngas

After cleanup for removal of impurities, syngas can be used for:

- Electric power generation
- Steam generation
- Process heat
- Chemicals production
- Liquid fuels production
- All of the above
Texaco Gasification Process

Feeds
- Oxygen

Gasification
- Alternatives:
 - Natural Gas
 - Any Oil
 - Tar/Asphalt
 - Petroleum Coke
 - Coal
 - Wastes/by-Products
 - Biomass
- Syngas
- Gasification
- Sulfur Recovery
- Co-products:
 - Hydrogen
 - Chemicals
 - Ammonia
 - Fuel Cells
 - Fischer-Tropsch

Gas Refining
- CO₂
- Syngas
- Gas Separation
- Sulfur Recovery
- HRSG
- Steam
- Electricity
- Combustion Turbine

End-products
- Sulfur
- Solids
- Natural Gas
- Any Oil
- Tar/Asphalt
- Petroleum Coke
- Coal
- Wastes/by-Products
- Biomass
Chemicals and Fuels from Syngas

- CO + H2

Acetic Anhydride
- Terephthalic Acid
- p-Xylene

Ethene & Propene
- VAM
- n-Butyl Acetate
- n-Butylene

Acetic Acid
- MTBE
- Isobutylene

Methanol
- Formaldehyde
- Aniline
- Phosgene

Formaldehyde
- Aniline Phosgene

Terephthalic Acid
- MTBE

Ethene & Propene
- VAM

n-Butyl Acetate
- Terephthalic Acid

Acetylene
- Solvents

Gasoline & Fuels
- Ethanol & Isobutanol

Lubricants & Wax
- Urea

Ethanol & Isobutanol
- Ammonium Phosphate & Diammonium Phosphate

Sulphuric Acid
- Ammonium Sulphate

Phosphoric Acid
- Ammonia

Ammonia
- Nitric Acid
- Ammonium Sulphate

Ammonium Nitrate
- Nitric Acid

1,4-Butanediol
- Acetylene

Nitric Acid
- Ammonium Nitrate

MDI
- Formaldehyde

SNG
- Ammonia

Source: Gunal-Akgol, U.Waterloo
An Old Technology

- Coal gas was first used in London in 1790 for gas lights
- Later used for fuel gas in Europe and North America in the 19th and early 20th century
- Used to produce coal-derived transportation fuels in Germany during WWII
- Many different gasification processes have been proposed, employing different schemes for fuel feed, reactor design, etc.
- Current generation of gasifiers are cleaner and more efficient than earlier designs
A 1942 view of coal gasification

... from John Wayne and friends
Byproduct Coke Plant
(World’s Biggest, ca. 1970)
Why the Current Interest?

• Gasification is already commercially attractive for a variety of refinery and petrochemical processes
• Offers a way to utilize low-value products or wastes as “opportunity fuels” (esp. petroleum coke)
• Can produce multiple products (polygeneration)
Worldwide Gasification Capacity

Source: SFA Pacific /DOE, 2001
Gasification by Global Region

Source: SFA Pacific /DOE, 2001
Largest Gasification Projects

<table>
<thead>
<tr>
<th>Plants</th>
<th>Location</th>
<th>Gasifiers</th>
<th>MW_{th} syngas</th>
<th>Year</th>
<th>Feedstock/Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sasol-II</td>
<td>S. Africa</td>
<td>Lurgi</td>
<td>5,090</td>
<td>1977</td>
<td>coal / F-T liquids</td>
</tr>
<tr>
<td>Sasol-III</td>
<td>S. Africa</td>
<td>Lurgi</td>
<td>5,090</td>
<td>1982</td>
<td>coal / F-T liquids</td>
</tr>
<tr>
<td>Confidential*</td>
<td>USA</td>
<td>Texaco</td>
<td>2,761</td>
<td>2006</td>
<td>coal / electric</td>
</tr>
<tr>
<td>Port Authur*</td>
<td>USA</td>
<td>E-Gas</td>
<td>2,029</td>
<td>2005</td>
<td>coke / electric</td>
</tr>
<tr>
<td>Dakota</td>
<td>USA</td>
<td>Lurgi</td>
<td>1,900</td>
<td>1984</td>
<td>lignite / SNG</td>
</tr>
<tr>
<td>Repsol*</td>
<td>Spain</td>
<td>Texaco</td>
<td>1,654</td>
<td>2005</td>
<td>residue / electric</td>
</tr>
<tr>
<td>Lake Charles*</td>
<td>USA</td>
<td>Texaco</td>
<td>1,407</td>
<td>2005</td>
<td>coke / electric</td>
</tr>
<tr>
<td>Deer Park*</td>
<td>USA</td>
<td>Texaco</td>
<td>1,400</td>
<td>2006</td>
<td>coke / electric</td>
</tr>
<tr>
<td>SARLUX</td>
<td>Italy</td>
<td>Texaco</td>
<td>1,217</td>
<td>2001</td>
<td>residue / electric</td>
</tr>
<tr>
<td>Human*</td>
<td>China</td>
<td>Texaco</td>
<td>1,171</td>
<td>2006</td>
<td>coal / syngas chem.</td>
</tr>
</tbody>
</table>

Source: SFA Pacific /DOE, 2001
Gasifier Technologies

Source: SFA Pacific /DOE, 2001
Primary Gasification Feedstock

Source: SFA Pacific /DOE, 2001
Gasification Applications

Source: SFA Pacific /DOE, 2001
Pet Coke Gasification to H₂ and CO₂ for Ammonia and Urea

Farmland Industries, Coffeyville, Kansas
Pet Coke Gasification to H₂ and CO₂ for Ammonia and Urea
Farmland Industries, Coffeyville, Kansas
SNG Plant Supplying CO$_2$ for Enhanced Oil Recovery (EOR) and Sequestration

Sources: USDOE; NRDC
Why the Current Interest?

- Gasification is already commercially attractive for a variety of refinery and petrochemical processes.
- Offers a way to utilize low-value products or wastes as “opportunity fuels” (esp. petroleum coke).
- Can produce multiple products (polygeneration).
- In the U.S., great interest today is in the potential for IGCC power plants to meet stringent air emission standards — especially future CO₂ capture and storage reqmts — at lower cost than combustion-based plants.
Fate of Impurities

Coal Combustion Systems

- Sulfur \rightarrow SO$_2$
- Nitrogen \rightarrow NO + NO$_2$
- Ash \rightarrow (Bottom Ash) + Flyash
PC Plant with CO$_2$ Capture

Combustion Controls
- **Fuel Type**: Coal
- **NOx Control**: None

Post-Combustion Controls
- **NOx Control**: Hot-Side SCR
- **Particulates**: Cold-Side ESP
- **SO2 Control**: Wet FGD
- **Mercury**: None
- **CO2 Capture**: Amine System

Solids Management
- **Disposal**: mixed w/ Landfill

Plant Diagram
IGCC Plant with CO$_2$ Capture

Configure Plant

- **Gasification Options**
 - Gasifier: Texaco (Oxygen-blown)
 - Gas Cleanup: Cold-gas
 - CO2 Control: Sour Shift + Selexol

- **Combustion Controls**
 - NOx Control: None

- **Solids Management**
 - Slag: Landfill
 - Sulfur: Sulfur Recovery

IGCC Base Configuration

![Diagram of IGCC Plant with CO$_2$ Capture](image-url)
A Modern Gas Turbine
Integrated Coal Gasification Combined Cycle (IGCC) Plant
Wabash River, Indiana

Source: Global Energy, 2002
Polk Power Station
IGCC Plant
(Tampa Electric, 250 MW)
EPRI Cost and Performance Estimates (without CO$_2$ capture)

<table>
<thead>
<tr>
<th>Technology</th>
<th>SubPC</th>
<th>SuperPC</th>
<th>UltraPC</th>
<th>AFBC</th>
<th>IGCC</th>
<th>NGCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>590</td>
<td>506</td>
</tr>
<tr>
<td>Capital ($/kW)</td>
<td>1364</td>
<td>1397</td>
<td>1416</td>
<td>1426</td>
<td>1502</td>
<td>500</td>
</tr>
<tr>
<td>HHV Heat Rate (kJ/kWh)</td>
<td>10,070</td>
<td>9550</td>
<td>9402</td>
<td>10,024</td>
<td>8891</td>
<td>7646</td>
</tr>
<tr>
<td>Fuel ($/GJ)</td>
<td>0.948</td>
<td>0.948</td>
<td>0.948</td>
<td>0.948</td>
<td>0.948</td>
<td>2.50/3.71/2.50</td>
</tr>
<tr>
<td>Capacity Factor (%)</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80/80/40</td>
</tr>
<tr>
<td>COE ($/MWh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital</td>
<td>24.0</td>
<td>24.6</td>
<td>24.9</td>
<td>25.1</td>
<td>26.5</td>
<td>8.8</td>
</tr>
<tr>
<td>O+M</td>
<td>6.8</td>
<td>6.7</td>
<td>6.7</td>
<td>8.9</td>
<td>7.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Fuel</td>
<td>9.5</td>
<td>9.0</td>
<td>8.8</td>
<td>9.7</td>
<td>8.4</td>
<td>19.1</td>
</tr>
<tr>
<td>Total</td>
<td>40.3</td>
<td>40.3</td>
<td>40.5</td>
<td>43.7</td>
<td>42.1</td>
<td>31.1/40.3/41.9</td>
</tr>
</tbody>
</table>

Note: Hg removal adds ~2-3$/MWh to PC and 0.3$/MWh to IGCC COE.

Source: Holt, 2002
Cost of Alternative Options

- Wind, Biomass
- Coal and Gas Plants with CO₂ Capture
- Nuclear, Hydro
- Natural Gas Combined Cycle
- Coal Plants (combustion, gasification)
- IGCC
- PC

Cost of Electricity ($ / MWh)
CO₂ Emission Rate (kg / MWh)
Gasification vs. Combustion

• *A Chemistry Perspective:*
 Combustion = Oxidizing atmosphere
 Gasification = Reduction atmosphere

• *A Disciplinary Perspective:*
 Combustion = Mechanical Engineering
 Gasification = Chemical Engineering

• *A Technology Perspective:*
 Combustion = Power Plants
 Gasification = Chemical Plants, Refineries, etc.
Where Do We Go from Here?