Environmental Problems of the 21st Century: The Engineer as Villain and Hero

Edward S. Rubin

Department of Engineering and Public Policy Carnegie Mellon University

Graduate Colloquium Department of Systems and Information Engineering University of Virginia

April 19, 2002

Major Environmental Issues

Air Pollution

- *SO*₂, *NO*_x, *PM*, *etc*
- Air toxics
- Acid deposition
- Ozone Depletion
- Global Warming
- Water Pollution
 - Drinking water
 - Surface waters
 - Groundwater

- Solid Wastes
- Hazardous Wastes
- Radioactive Wastes
- Depletion of Natural Resources
- Land Use Impacts
 - Loss of habitat
- Ecological Impacts
 - Biodiversity
 - Marine life

Engineers as Villains

Question:

Which of the following environmental problems is a direct result of engineering design?

(a) Industrial air pollution

(b) Automobile waste disposal

(c) Toxic metal water pollution

(d) Radioactive wastes

(e) Urban smog

(f) Global warming

(g) All of the above(h) None of the above

(g) All of the above

Are engineers really the bad guys responsible for all these problems?

Sources of Environmental Impacts and Solutions

Mapping of environmental topics into undergraduate disciplines

Number of Federal U.S. Environmental Laws, 1870-1990

Source: EPRI

Engineers as Heroes

Question:

Which of the following engineers is working to solve environmental problems?

Who is the environmental hero?

Professor A? Professor B? Professor C? Professor D?(e) All of the above?(f) None of the above?

(d) All of the above

engineering & reenvironment

EDWARD S. RUBIN

Sources of Environmental Impact that Engineers Can Influence

- *Design* of technology
- *Deployment* of technology
- *Operation/Use* of technology

leading to . . .

- Land use impacts
- Discharges to the environment (gases, liquids, solids)
 - Routine
 - Accidental
 - Direct
 - Indirect

How to Become a Hero

- Apply Principles of :
 - Green Design
 - Pollution Prevention
 - Industrial Ecology
 - Sustainable Development

Reducing Environmental Impacts

- Produce desired goods and services in ways that:
 - Use less material
 - Produce less waste
 - Use less energy
- Use alternative materials, technologies and energy sources that offer environmental benefits

A Life Cycle Framework for Environmental Assessments

21st Century Challenges

• Air Pollution

- *SO*₂, *NO*_x, *PM*, *etc*
- Air toxics
- Acid deposition
- Ozone Depletion
- Global Warming
- Water Pollution
 - Drinking water
 - Surface waters
 - Groundwater

- Solid Wastes
- Hazardous Wastes
- Radioactive Wastes
- Depletion of Natural Resources
- Land Use Impacts
 Loss of habitat
- Ecological Impacts
 - Biodiversity
 - Marine life

Growth in Atmospheric Greenhouse Gas Concentrations

Predicted Temperature Changes for a Doubling of Atmospheric CO₂ Concentration

Temperature Increase (C)

Framework Convention on Climate Change (1992)

.... achieve stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.

Such a level should be achieved within a time-frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner.

CO₂ From Energy Use is the Dominant Greenhouse Gas

U.S.Energy Consumption by Fuel Type

Sources of U.S. CO₂ Emissions

Controlling CO₂ Emissions Growth

What role can engineers play ?

CO₂ Mitigation Options

CO₂ Mitigation Options

A Success Story

Appliance Efficiency Standards

<u>much more</u> <u>can be done</u>

Information Technology is the Fastest-Growing Use of Electricity

Energy Sources for U.S. Electricity

52%

14%

3%

8%

3%

- Fossil Fuels
 - Coal
 - Natural Gas
 - Petroleum
- Nuclear
 - Uranium 20%
- Renewables
 - Hydro
 - Other

The Biggest Challenge

Improved Automotive Fuel Economy

CO₂ Mitigation Options

The Biggest Challenge

Alternative Fuels for Transportation

U.S. Electricity Generation by Fuel (DOE/EIA Reference Case)

A Modern U.S. Wind Farm

A Building-Integrated Photovoltaic System

Cost Trends for Renewable Energy Technologies

Source: IIASA

CO₂ Mitigation Options

Why the Interest in Carbon Capture and Sequestration (CCS)

CCS technology may be a way to:

- Have your cake and eat it: use fossil fuels without CO₂ emissions
- Minimize the overall cost of reducing greenhouse gas emissions
- Provide a bridge to a more sustainable energy future

Schematic of CO₂ Capture and Storage System

CO₂ Capture Technologies

CO₂ Capture at a Coal-Fired Power Plant (Shady Point, Oklahoma)

Source: ABB Lummus

Coal Gasification Combined Cycle Plant

CO₂ Sequestration Options

Geologic Sequestration

- Deep saline reservoirs
- Depleted oil and gas wells
- Unmineable coal seams
- Ocean Sequestration

Geologic Sequestration of CO₂ (Sleipner Gasfield, North Sea, Norway)

Geologic Sequestration with Enhanced Oil Recovery (EOR)

Cost of Alternative Options

Use of Carbon Capture Technologies in Climate Change Mitigation

Final Exam (take home)

For Faculty

- Identify ways to incorporate environmental considerations into your courses
- Challenge your students to propose ways of reducing environmental impacts without sacrificing other key needs (functionality, reliability, etc.)

For Students

- Think about how your research and courses could have environmental consequences
- Challenge your professors to discuss and propose ways of reducing environmental impacts without sacrificing other key needs (functionality, reliability, etc.)

Who will be the new environmental hero?

Ellen J. Bass Assistant Professor

Peter A. Beling Associate Professor

Donald E. Brown Professor and Chair

Alfredo Garcia Assistant Professor

Stephanie Guerlain Assistant Professor

<u>Yacov Y. Haimes</u> Lawrence R. Quarles Professor

Barry Horowitz Professor

Thomas E. Hutchinson Calcott Professor

Roman Krzysztofowicz Professor

<u>James H. Lambert</u> Research Assistant Professor

James W. Lark III Assistant Professor

Gerard P. Learmonth Associate Professor

Garrick E. Louis Assistant Professor

<u>Christina M.</u> <u>Mastrangelo</u> Associate Professor

Stephen D Patek Assistant Professor

William T. Scherer Associate Professor

<u>K Preston White Jr</u> Professor

All of the above None of the above

All of the above !