Overview of Recent Accomplishments and Work in Progress

Edward S. Rubin
Carnegie Mellon University

Project Review Meeting
National Energy Technology Laboratory
April 2, 2001
Outline of Today’s Presentation

- Brief History of the Project
- Recent Accomplishments
 - IECM technologies
 - Toward Vision 21
- Work in Progress
- Future Plans
- Open Discussion
Project History

- “Development of the Integrated Environmental Control Model”
 - CORs: C. Drummond, L. Gould, P. Rawls, T. Feeley, G. Gibbon
 - September 1992 - April 2000

- “Development and Application of Optimal Design Capability for Coal Gasification Systems”
 - CORs: K. Williams, G. Gibbon
 - September 1992 - present
Because of the...

- Increasing complexity of advanced processes
- Multiple options for component design & selection
- Strong interactions among system components
- Significant performance and cost uncertainties
Objectives

- Develop a comprehensive modeling framework to estimate the performance, environmental emissions, and cost of coal-based power generation technologies.

- Develop a method for comparing alternative options on a systematic basis, including the effects of uncertainty.
Approach

- Process Technology Models
- Engineering Economic Models
- Advanced Software Capabilities
- Systems Analysis Framework
Integrated Environmental Control Model (IECM)

Coal Cleaning

Combustion Controls

Flue Gas Cleanup & Waste Management

- NOx Removal
- Particulate Removal
- SO2 Removal

- Combined SOx/NOx Removal
- Advanced Particulate Removal
Process Performance Models

- Calculate detailed mass and energy flows
- Employ empirical relationships and models based on available data
- Predict component and system efficiency
- Predict multi-media environmental emissions
Process Cost Models

- Direct capital cost of major process areas
- Total system capital cost
- Fixed operating costs
- Variable operating costs
- Total cost of electricity
- Linked to process performance models
Probabilistic Software Capability

- Can specify parameter values as distribution functions to reflect uncertainty or variability in model input data

- Explicitly quantifies the effects of uncertainty on predicted performance, emissions, and cost, yielding confidence intervals for uncertain results
IECM Software Package

Fuel Properties
- Heating Value
- Composition
- Delivered Cost

Plant Design
- Furnace Type
- Emission Controls
- Solid Waste Mgmt
- Chemical Inputs

Cost Data
- O&M Costs
- Capital Costs
- Financial Factors

Power Plant Model

Graphical User Interface

Plant and Fuel Databases

Plant & Process Performance
- Efficiency
- Resource Use

Environmental Emissions
- Air, Land

Plant & Process Costs
- Capital
- O&M
- COE
The IECM is Publicly Available

- Web Access:
Preliminary IECM User Group

- ABB Power Plant Control
- American Electric Power
- Consol, Inc.
- Energy & Env. Research Corp.
- Exportech Company, Inc.
- FirstEnergy Corp.
- FLS Miljo A/S
- Foster Wheeler Development Corp.
- Lehigh University
- Lower Colorado River Authority
- McDermott Technology, Inc.
- Mitsui Babcock Energy LTD.
- National Power Plc.
- Niksa Energy Associates
- Pacific Corp.
- Pennsylvania Electric Association
- Potomac Electric Power Co.
- Savvy Engineering
- Sierra Pacific Power Co.
- Southern Company Services, Inc.
- Stone & Webster Engineering Corp.
- Tampa Electric Co.
- University of California, Berkeley
- US Environmental Protection Agency
Overview of Recent Accomplishments

- Combustion NO$_x$ controls (v 3.3)
- Mercury control technologies (v 3.4)
- IGCC systems (current and advanced)
- Solid oxide fuel cells
- CO$_2$ capture and sequestration systems
- Flexible fuel options
- Enhanced software capabilities
Newest Versions of the IECM...
New IECM Modules for Combustion NO\textsubscript{x} Controls

Version 3.3

- Selective Non-Catalytic Reduction (SNCR)
- Low NO\textsubscript{x} Burners (LNB)
- LNB + Overfire air
- LNB + SNCR
- Natural Gas Reburn
- Tangential, Wall & Cyclone Firing
New IECM Modules for Mercury Controls

Version 3.4

- Carbon injection systems
- Flue gas humidification option
- Effects of coal type (eastern vs. western)
- Effects of control technology selection
 - Particulate collector
 - FGD system
 - SCR system
Multi-Pollutant Interactions

Criteria Air Pollutants

PM
SO₂
NOₓ

Hazardous Air Pollutants

Hg
HCl
H₂SO₄
A Special Announcement
Welcome to the DOE Integrated Environmental Control Model

IECM 3.3 © 2000, Carnegie Mellon University
IECM Interface 3.3 © 2000, Carnegie Mellon University
Model Applications

- Process design
- Technology evaluation
- Cost estimation
- R&D management

- Risk analysis
- Environmental compliance
- Marketing studies
- Strategic planning
Current Activities and Plans (PC plants)

- Refine existing models for mercury control and other pollutants as new data become available
- Couple the IECM to a database of U.S. power plant and fuel characteristics
- Analyze options, costs and emission reductions associated with use of control technologies for criteria pollutants and air toxics
- Explore IECM applications to the DOE Power Plant Improvement Initiative
Toward Vision 21 ...
Model Software Improvements

- Increased Flexibility
 - Multiple fuel types (coal, oil, gas)
 - Multiple plant types (combustion, IGCC, fuel cells, gas turbines, etc)
 - Easy and fast integration of new modules

- Additional Features
 - Plant configurations
 - Results tools
User Interface Improvements

- Increased Flexibility
 - Configuration of flowsheets
 - Two-dimensional flowsheets
 - Interface database compiler

- Additional Features
 - Multiple technology navigation menu
 - Multiple session results
 - Comparisons of up to six sessions
 - Differences between two cases
Comparisons of Competing Options

Cumulative Probability

Technology A

Technology B

Total Cost Savings Relative to Baseline Technology ($/MWh)
Select Gasification Combined Cycle (IGCC) Options

Choose Power System

Please Choose a Power System:

- Conventional Combustion
- Gasification Comb. Cycle
- Advanced Combustion
- Fuel Cells
- Vision 21 Plant
Select Oxygen Plant

Configure Plant

Set Parameters

Get Results

Gasification Options
- Gasifier: KRW
- Oxidant: Oxygen
- Gas Cleanup: Air, Oxygen

Post-Combustion Controls
- NOx Control: None

Solids Management
- Slag: Landfill
- Sulfur: Landfill

Plant Diagram
Select Gas Cleanup System

Gasification Options
- Gasifier: KRW
- Oxidant: Oxygen
- Gas Cleanup: Cold

Post-Combustion
- NOx Control: SCR, None, SCR

Solids Management
- Slag: Landfill
- Sulfur: Landfill
Current Status of IGCC Models

- Response surface model of advanced IGCC system (KRW gasifier + hot gas cleanup) is completed; implementation in the IECM framework is nearing completion.

- Response surface model of baseline IGCC system (Texaco gasifier + cold gas cleanup) is under development; expected completion in June.
Set IGCC Process Parameters

The image shows a software interface for setting IGCC (Integrated Gasification Combined Cycle) process parameters. The interface allows the configuration and management of various parameters related to the plant setup and process control.

Table of Parameters:

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Units</th>
<th>Unc</th>
<th>Value</th>
<th>Calc</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
<th>DV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gasifier Design</td>
<td></td>
<td></td>
<td>95.0</td>
<td>90.0</td>
<td>98.0</td>
<td>95.0</td>
<td>95.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Gasifier Carbon Conversion</td>
<td>%</td>
<td></td>
<td>95.0</td>
<td>90.0</td>
<td>98.0</td>
<td>95.0</td>
<td>95.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Gasifier Oxygen to Carbon Ratio</td>
<td>mol O2 / mol C</td>
<td></td>
<td>0.46</td>
<td>0.45</td>
<td>0.47</td>
<td>0.46</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Gasifier Steam to Carbon Ratio</td>
<td>mol H2O / mol C</td>
<td></td>
<td>0.46</td>
<td>0.445</td>
<td>0.455</td>
<td>0.46</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Coal-bound N Converted to NH3</td>
<td>%</td>
<td></td>
<td>10.0</td>
<td>5.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Sulfur Retained in Gasifier Bot Ash</td>
<td>%</td>
<td></td>
<td>90.0</td>
<td>80.0</td>
<td>95.0</td>
<td>90.0</td>
<td>90.0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Emissions Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Calcium to Sulfur Ratio</td>
<td>mol Ca / mol C</td>
<td></td>
<td>2.60</td>
<td>2.10</td>
<td>3.00</td>
<td>2.60</td>
<td>2.60</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Sulfation Unit Conversion</td>
<td>%</td>
<td></td>
<td>95.0</td>
<td>90.0</td>
<td>98.0</td>
<td>95.0</td>
<td>95.0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>NH3 Converted to NOx in Turbine</td>
<td>%</td>
<td></td>
<td>90.0</td>
<td>50.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SCR NOx Removal Efficiency</td>
<td>%</td>
<td></td>
<td>80.0</td>
<td>50.0</td>
<td>90.0</td>
<td>80.0</td>
<td>80.0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>SCR NH3 Slip</td>
<td>ppmv</td>
<td></td>
<td>10.0</td>
<td>5.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IGCC Process Areas

- Coal Handling
- Limestone Handling
- Oxidant Feed
- Gasification
- Sulfation
- Zinc Ferrite

- Boiler Feedwater System
- Gas Turbine
- Heat Recovery Steam Generation
- Selective Catalytic Reduction
- Steam Turbine
- General Facilities
IGCC Fixed O&M Costs

- **Fuels**
 - Coal Cost
 - Fuel Oil Cost
 - LPG - Flare Cost

- **Reagents**
 - Sulfuric Acid Cost
 - NaOH Cost
 - Hydrazine Cost
 - Morpholine Cost
 - Limestone Cost
 - Lime Cost
 - Soda Ash Cost

- **SCR System**
 - SCR Catalyst Cost
 - Ammonia Cost

- **Zinc Ferrite System**
 - Zinc Ferrite Sorbent Cost
 - Plant Air Adsorbent Cost

- **Waste Water System**
 - Corrosion Inhibitor Cost
 - Surfactant Cost
 - Chlorine Cost
 - Biocide Cost
 - Waste Water Cost
 - Raw Water Cost

- **Byproducts**
 - Sulfur Byproduct Cost
 - Sulfuric Acid Byproduct Cost
ASPEN Model of an IGCC System
Response Surface Model Development

Range of Parameter Inputs, I_i

Detailed Performance Model

Performance Outputs (O_j)

Performance Outputs (O_j)

Response Surface Model

Regression Analysis

$O_j = f(I_i)$
Response Surface Model for an IGCC System
Desktop Model of a Process

Input Assumptions

Response Surface Model (RSM)

Cost Model

Performance
Emissions
Cost
Additional Fuel and Technology Options

Choose Power System

Please Choose a Power System:

- Conventional Combustion
- Gasification Comb. Cycle
- Advanced Combustion
- Fuel Cells
- Vision 21 Plant
Simple Cycle Gas Plant

Gasification Options
- Plant Type: Simple Cycle

Post-Combustion Controls
- NOx Control: None
- CO2 Control: None

Solids Management
- Slag: Landfill
- Sulfur: Landfill
Open Vision 21 Plant Options

Choose Power System

Please Choose a Power System:
- Conventional Combustion
- Gasification Comb. Cycle
- Advanced Combustion
- Fuel Cells
- Vision 21 Plant
Vision 21 Workbench
Select Existing Flowsheet - 2

Vision 21 Plant:
- FETC - Combustion Based
- FETC - Gasifier Based
- FETC - Combustion Based
- User Specified

Plant Diagram:
- PFBC
- ASU
- CB
- HRSG
- GTST
- FC
- GC
- TC
- ST
- GT
- Air
- Water
- Chemical
- Solid
- Liquid
- Gas
New Modules Under Development ...
Tubular SOFC Design

- Fuel
- Air
- Electrolyte
- Cathode
- Anode
- Interconnect
CO₂ Capture Technologies

CO₂ Separation and Capture

Absorption
- Chemical
 - MEA
 - Caustic
 - Other
- Physical
 - Selexol
 - Rectisol
 - Other

Adsorption
- Adsorber Beds
 - Alumina
 - Zeolite
 - Activated C
- Regeneration Method
 - Pressure Swing
 - Temperature Swing
 - Washing

Cryogenics

Membranes
- Gas Separation
 - Polyphenyleneoxide
 - Polydimethylsiloxane
- Gas Absorption
 - Polypropylene
- Ceramic Based Systems

Microbial/Algal Systems
CO₂ Capture Using Amine-Based System

Absorber

Exhaust Gas

Blower

MEA makeup

Flue Gas

Pump

Cooler

rich-cool

lean-cool

H-Ex*

rich-hot

Lean-hot

MEA Storage

Flash

CO₂ product

Cooler

Regenerator

Reboiler

Spent Sorbent

Pump
Combustion Controls

- **Furnace Type:** Tangential
- **NOx Control:** Low NOx Burners

Post-Combustion Controls

- **NOx Control:** Hot-Side SCR
- **Particulates:** Cold-Side ESP
- **SO2 Control:** Wet FGD
- **SO2/NOx:** None
- **CO2 Control:** Absorption - MEA

By-Product Management

- **Recovery:** None
- **Fly Ash Disposal:** mixed w/ Landfill
- **CO2 Storage:** Depleted Oil Wells

Plant Diagram

[Diagram showing the process flow of a plant with various stages and routes labeled.]
Cost of CO₂ Avoided

![Cost of CO₂ Avoided](image)

- Mitigation cost ($/ton CO₂ avoided)
- Cumulative probability

- Deterministic
- Probabilistic
Application to Major Power Generation Options

Power Generation Technologies

Fuel
- Coal
 - Combustion-based
 - Gasification-based
- Natural Gas
 - Direct Combustion
 - Gas Reforming

Oxidant
- Air
- Oxygen

Technology
- Simple Cycle
 - Pulverized Coal Gas Turbines
- Combined Cycle
 - Gas Turbines
 - Coal Gasification
 - Fuel Cells
 - Other
IGCC Plant with CO$_2$ Capture

Configure Plant

Set Parameters

Get Results

Gasification Options

Gasifier: KRW
Oxidant: Oxygen
Gas Cleanup: Hot

Post-Combustion Controls

NOx Control: SCR

Solids Management

Slag: Landfill
Sulfur: Sulfur, Landfill, Sulfuric Acid

Plant Diagram
NGCC Plant with CO$_2$ Capture
To Succeed We Need ...
Recipe for Success

- Talented Researchers
- DOE Collaboration
- Continuity of Funding

(blend in equal parts)
Comments and Discussion
Configure Base Plant

Combustion Controls
- Furnace Type: Tangential
- NOx Control: Low NOx Burners

Post-Combustion Controls
- NOx Control: None
- Particulates: None
- SO2 Control: None
- SO2/NOx: None

Solids Management
- Recovery: None
- Fly Ash Disposal: mixed w/ Landfill

Plant Diagram
Select SO₂ Controls

Combustion Controls
- Furnace Type: Tangential
- NOx Control: Low NOx Burners

Post-Combustion Controls
- NOx Control: Hot-Side SCR
- Particulates: Cold-Side ESP
- SO₂ Control: Wet FGD
- SO₂/NOx: None

Solids Management
- Recovery: None
- Fly Ash Disposal: mixed w/ Landfill
Set Coal Properties

Current Coal
Name: Appalachian Medium Sulfur
Rank: Bituminous
Source: Model Default Coals

Composition (wt% as fired) and Higher Heating Value (Btu/lb)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Save As User-Defined</th>
<th>Add to Favorites</th>
<th>Use Default Ash Properties</th>
<th>Edit Ash Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Heating Value</td>
<td>1.326e+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Carbon</td>
<td>73.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Hydrogen</td>
<td>4.830</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Oxygen</td>
<td>5.410</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Chlorine</td>
<td>7.000e-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Sulfur</td>
<td>2.130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Nitrogen</td>
<td>1.420</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Ash</td>
<td>7.230</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Moisture</td>
<td>5.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Cost ($/ton)</td>
<td>32.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Favorite Coals
Name: Wyoming Powder River Basin
Rank: Sub-Bituminous

Browse All Coals
Use This Coal
Remove From Favorites
View Ash Properties
Set Base Plant Parameters

Configure Plant
- Overall Plant
- Coal Properties
- Base Plant

Set Parameters
- Furnace Factors
- Emission Constraints
- NOx Control
- Particulate Control
- SO2 Control
- Solid Waste Mgmt

Get Results

<table>
<thead>
<tr>
<th>Title</th>
<th>Units</th>
<th>Unc</th>
<th>Value</th>
<th>Calc</th>
<th>Min</th>
<th>Max</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Electrical Output</td>
<td>MWg</td>
<td></td>
<td>500</td>
<td></td>
<td>1</td>
<td>3000</td>
<td>500</td>
</tr>
<tr>
<td>Steam Cycle Heat Rate</td>
<td>Btu/kWh</td>
<td></td>
<td>7880</td>
<td></td>
<td>6000</td>
<td>11000</td>
<td>7880</td>
</tr>
<tr>
<td>Boiler Efficiency</td>
<td>%</td>
<td></td>
<td>89.21</td>
<td>✔</td>
<td>0</td>
<td>100</td>
<td>calc</td>
</tr>
<tr>
<td>Capacity Factor</td>
<td>%</td>
<td></td>
<td>75</td>
<td></td>
<td>0</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>Excess Air For Furnace</td>
<td>% stoeich.</td>
<td></td>
<td>20.00</td>
<td>✔</td>
<td>0</td>
<td>40</td>
<td>calc</td>
</tr>
<tr>
<td>Leakage Air at Preheater</td>
<td>% stoeich.</td>
<td></td>
<td>19.00</td>
<td>✔</td>
<td>0</td>
<td>60</td>
<td>calc</td>
</tr>
<tr>
<td>Gas Temp. Exiting Economizer</td>
<td>deg F</td>
<td></td>
<td>700</td>
<td></td>
<td>250</td>
<td>1200</td>
<td>700</td>
</tr>
<tr>
<td>Gas Temp. Exiting Air Preheater</td>
<td>deg F</td>
<td></td>
<td>300</td>
<td></td>
<td>150</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>Ambient Air Temperature</td>
<td>deg F</td>
<td></td>
<td>80</td>
<td></td>
<td>-50</td>
<td>130</td>
<td>80</td>
</tr>
<tr>
<td>Ambient Air Pressure</td>
<td>psa</td>
<td></td>
<td>14.7</td>
<td></td>
<td>12</td>
<td>15</td>
<td>14.7</td>
</tr>
<tr>
<td>Ambient Air Humidity</td>
<td>lb H2O/lb dry air</td>
<td></td>
<td>0.018</td>
<td>0</td>
<td>0.03</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>Collected Bottom Ash Solids</td>
<td>%</td>
<td></td>
<td>60.70</td>
<td>✔</td>
<td>0</td>
<td>100</td>
<td>calc</td>
</tr>
<tr>
<td>Base Plant Energy Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal Pulverizer</td>
<td>% MWg</td>
<td></td>
<td>0.600</td>
<td>✔</td>
<td>0</td>
<td>2</td>
<td>calc</td>
</tr>
<tr>
<td>Steam Cycle Pumps</td>
<td>% MWg</td>
<td></td>
<td>0.65</td>
<td></td>
<td>0</td>
<td>2</td>
<td>0.65</td>
</tr>
<tr>
<td>Forced Draft Fans</td>
<td>% MWg</td>
<td></td>
<td>1.5</td>
<td></td>
<td>0</td>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>Cooling System</td>
<td>% MWg</td>
<td></td>
<td>1.8</td>
<td></td>
<td>0</td>
<td>2</td>
<td>1.8</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>% MWg</td>
<td></td>
<td>1.3</td>
<td></td>
<td>0</td>
<td>4</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Specify Input Uncertainties

Uncertainty Editor

<table>
<thead>
<tr>
<th>Plant Parameter</th>
<th>Units</th>
<th>Value</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum SO2 Removal Efficiency</td>
<td>%</td>
<td>95</td>
<td>90</td>
<td>99</td>
</tr>
</tbody>
</table>

Distribution:
- Triangular
- Normal
- Uniform
- Fractiles

Description:
Triangular(a,b,c) describes a triangular-shaped distribution where the values a, b, and c represent the minimum, most likely and maximum values, respectively.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Min</th>
<th>Mode</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0.9000</td>
<td>1.000</td>
<td>1.023</td>
</tr>
<tr>
<td>Triangular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform</td>
<td>85.50</td>
<td>95.00</td>
<td>97.18</td>
</tr>
</tbody>
</table>

Uncertainty Tools: Untitled

Uncertainty Areas
- Base Plant
- Air Preheater
- Solid Waste Mgmt.
- NOx Control
- Particulate Control
- SO2 Control
- SO2/NOx Control

- Select All
- Select None

Sample Size: 50

Sampling Method: Median LHS
Results: Plant Mass Flows

Stack Gas Component

<table>
<thead>
<tr>
<th>Stack Gas Component</th>
<th>Flow Rate (ton/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2</td>
<td>1771</td>
</tr>
<tr>
<td>O2</td>
<td>149.0</td>
</tr>
<tr>
<td>H2O</td>
<td>252.7</td>
</tr>
<tr>
<td>CO2</td>
<td>454.3</td>
</tr>
<tr>
<td>CO</td>
<td>0.0</td>
</tr>
<tr>
<td>HCl</td>
<td>2.395e-02</td>
</tr>
<tr>
<td>SO2</td>
<td>1.300</td>
</tr>
<tr>
<td>SO3</td>
<td>3.137e-02</td>
</tr>
<tr>
<td>NO</td>
<td>0.2053</td>
</tr>
<tr>
<td>NC2</td>
<td>1.656e-02</td>
</tr>
<tr>
<td>Ash</td>
<td>3.313e-02</td>
</tr>
<tr>
<td>Total</td>
<td>2629</td>
</tr>
</tbody>
</table>

Overall Flow Component

<table>
<thead>
<tr>
<th>Overall Flow Component</th>
<th>Flow Rate (ton/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>166.5</td>
</tr>
<tr>
<td>Lime/Limestone</td>
<td>9.729</td>
</tr>
<tr>
<td>Ammonia</td>
<td>0.3460</td>
</tr>
<tr>
<td>Total</td>
<td>176.6</td>
</tr>
<tr>
<td>Bottom Ash</td>
<td>3.997</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>9.638</td>
</tr>
<tr>
<td>FGD Waste</td>
<td>17.82</td>
</tr>
<tr>
<td>By-Product Ash</td>
<td>0.0</td>
</tr>
<tr>
<td>By-Product Gypsum</td>
<td>0.0</td>
</tr>
<tr>
<td>By-Product Sulfur</td>
<td>0.0</td>
</tr>
<tr>
<td>By-Product Acid</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>31.45</td>
</tr>
</tbody>
</table>
Results: Plant Cost Summary

<table>
<thead>
<tr>
<th>Technology</th>
<th>Capital Cost (M$)</th>
<th>Capital Cost ($/kW)</th>
<th>O&M Cost (M$/yr)</th>
<th>Revenue Required (M$/yr)</th>
<th>Revenue Required (mills/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 NOx Control</td>
<td>24.04</td>
<td>52.97</td>
<td>3.160</td>
<td>5.645</td>
<td>1.892</td>
</tr>
<tr>
<td>2 TSP Control</td>
<td>19.67</td>
<td>43.34</td>
<td>1.739</td>
<td>3.565</td>
<td>1.194</td>
</tr>
<tr>
<td>3 SO2 Control</td>
<td>64.13</td>
<td>141.3</td>
<td>10.13</td>
<td>17.66</td>
<td>5.817</td>
</tr>
<tr>
<td>4 Comb. SOx/NOx</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5 Subtotal</td>
<td>107.8</td>
<td>237.6</td>
<td>15.03</td>
<td>26.87</td>
<td>9.003</td>
</tr>
<tr>
<td>6 Base Plant</td>
<td>437.7</td>
<td>964.2</td>
<td>58.29</td>
<td>99.73</td>
<td>34.69</td>
</tr>
<tr>
<td>7 Total</td>
<td>545.5</td>
<td>1202</td>
<td>73.32</td>
<td>126.6</td>
<td>43.70</td>
</tr>
</tbody>
</table>

Costs are in constant 1996 dollars.
Probabilistic Results
IECM Capabilities

- A comprehensive modeling framework to estimate the performance, emissions, and cost of coal-based power plants
- A tool for comparing alternative options on a systematic basis, including the effects of uncertainty in performance and cost
A Hierarchy of Models for Technical and Policy Analysis

- Detailed (mechanistic) models or codes for specific processes or components
- Design options for a single facility (tech. feasibility, cost, efficiency, emissions)
- Multi-facility (or multi-sector) optimization or simulation (dynamic)
- Integrated assessment models (including measures of impacts)
Conventional Process Modeling
(Deterministic Simulation)
Parameter Uncertainty
Distributions

NORMAL

UNIFORM

LOGNORMAL

TRIANGULAR

BETA

FRACTILE
Stochastic Simulation

Parameter Uncertainty Distributions → Stochastic Modeler → Process Model → SAMPLING LOOP → Results
Example of a Probabilistic Result

Cumulative Probability

Total Capital Requirement ($/kW)

Probabilistic Result
Expert Judgments on Key Model Parameters

Sorbent Sulfur Loading

Gasifier Fines Carryover

Carbon Retention in Bottom Ash

Sorbent Sulfur Loading, wt-%

Fines Carryover, % of coal feed

Carbon Retention in Bottom Ash, % of coal feed carbon
Calculated Plant Efficiency

Cumulative Probability

Net Plant Efficiency (%, HHV basis)

- Probabilistic
- Deterministic
Total Plant Capital Cost

Total Plant Capital Cost

Cumulative Probability

Total Capital Requirement ($1994/kW)

DOE (1989)

Probabilistic

524 MW net

524 MW net
Value of Targeted Research

Input Uncertainty Assumptions
- Base Case Uncertainties
- Reduced Uncertainties in Selected Performance and Cost Parameters

Levelized Cost of Electricity, Constant 1989 mills/kWh
NETL 2001 Award Ceremony

March 28, 2001

Silver Award

to
Mercury Control Performance and Cost Model Team

- Developed a model that evaluated mercury control options for 12 different coal-fired plant configurations which EPA used in their final determination to regulate mercury.