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This article presents a model designed to capture the major aspects of setting priorities
among risks, a common task in government and industry. The model has both 

 

design

 

 features,
under the control of the rankers (e.g., how success is evaluated), and 

 

context

 

 features, proper-
ties of the situations that they are trying to understand (e.g., how quickly uncertainty can be
reduced). The model is demonstrated in terms of two extreme ranking strategies. The first, 

 

se-
quential risk ranking

 

, devotes all its resources, in a given period, to learning more about a sin-
gle risk, and its place in the overall ranking. This strategy characterizes the process for a soci-
ety (or organization or individual) that throws itself completely into dealing with one risk
after another. The other extreme strategy, 

 

simultaneous risk

 

 

 

ranking

 

, spreads available re-
sources equally across all risks. It characterizes the most methodical of ranking exercises.
Given ample ranking resources, simultaneous risk ranking will eventually provide an accu-
rate set of priorities, whereas sequential ranking might never get to some risks. Resource
constraints, however, may prevent simultaneous rankers from examining any risk very thor-
oughly. The model is intended to clarify the nature of ranking tasks, predict the efficacy of al-

 

ternative strategies, and improve their design.
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1. INTRODUCTION

 

Scarce time and resources prevent individuals
and societies from doing everything that they might
to reduce risks to health, safety, and environment.

 

(1,2)

 

When people face many risks, even evaluating the op-
tions for risk management can be overwhelming. One
common strategy for coping with such overload is to
rank risks in terms of their magnitude. Having done
so, one can begin evaluating the options by starting
with those directed at the largest risks.

This article provides a general analytic approach

to evaluating the efficacy of alternative risk-ranking
strategies. The model can be used prescriptively, in
order to design prioritization processes. It can also be
used descriptively, in order to predict the efficacy of
actual processes. Its parameters reflect both the goals
that risk managers set for themselves and the situa-
tions that confront them. Once a situation has been
characterized in the model’s terms, one can, for ex-
ample, compare the efficiency of devoting fixed re-
sources to examining all members in a class of risks si-
multaneously or to learning sequentially about a
series of focal risks (e.g., those nominated by the
news media for the “risk-of-the-month club”).

Setting priorities is, of course, as old (and as gen-
eral) a process as making lists of personal worries.
Ranking risks has gained prominence as a public pol-
icy tool, in part, through the U.S. Environmental Pro-
tection Agency’s (EPA’s) sustained efforts to evalu-
ate its own resource allocations. In 1987, EPA
published 
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sessment of Environmental Problems

 

.

 

(3)

 

 In it, EPA’s
senior scientific staff divided a wide range of environ-
mental and ecological risks into 31 categories. Some
categories reflected existing EPA programs or stat-
utes; others were the responsibility of other agencies
or of none at all. The ranking recognized the multi-
attribute character of risks, by including health, eco-
logical, and welfare effects. The technical feasibility
and costs of controlling the risks were left for a later
day. 

 

Unfinished Business

 

 propelled a public discus-
sion of risk-based priority setting.

 

(1)

 

 It was followed
by the EPA Science Advisory Board’s 

 

Reducing Risks:
Setting Priorities and Strategies for Environmental Pro-
tection

 

.

 

(4)

 

 In the ensuing decade, EPA sponsored a
string of state, regional, and local comparative risk
analyses.

 

(5,6)

 

 These efforts have generally been viewed
as useful experiences, bringing together diverse indi-
viduals and reaching some degree of consensus on
risk priorities. Given the need for public discourse
about the meaning of “risk,”

 

(7)

 

 these encounters
might have been socially valuable, whatever progress
they made in determining the relative magnitude of
risks. They are, in any case, but one representative of
a process that plays itself out in many places, where
regulatory agencies, industrial safety departments,
public schools, hospitals, and the like decide where to
focus their attentions.

If one accepts the need for setting risk priorities,
then it is important to design the process effectively.
Using rankers’ time well should increase both the
product of their labors and their willingness to invest
in the process. This analysis begins by offering a
model characterizing the fundamental structure of
risk ranking. That model is then realized in the form
of a simulation, designed to compute the efficacy of
alternative ranking strategies. It is used here to ex-
amine several archetypal situations, chosen to cap-
ture variants on the extremes of sequential and si-
multaneous evaluation. The article concludes with a
discussion of the data demands for applying the
model to specific risk domains, as well as possible
elaborations.

As characterized by Lindblom

 

(8,9)

 

 in the absence
of systematic, simultaneous ranking, priorities
change through some form of “muddling through”;
As individuals or organizations, we face some current
jumble of risks. Periodically, a specific hazard draws
our attention. After investing some resources, we un-
derstand it better, possibly changing its place in the
overall risk ranking. Then, we turn our attention to
the next hazard, and the next. Over time, this sequen-
tial process should gradually improve the prioritiza-

tion of the whole set. How quickly that happens
should depend on (1) the uncertainties in the situa-
tion we face, (2) what we hope to get out of it, and (3)
how we allocate our resources. The same factors
should determine our success, if we try to learn about
several (or all) risks at once, but must spread the
same learning resources over them.

The model presented here is designed to capture
these three elements of risk-ranking situations. Its
logic is as follows: At the beginning of a ranking pe-
riod, beliefs about the magnitudes of risks are sum-
marized in terms of subjective probability distribu-
tions (SPDs). Their spread reflects uncertainty about
(1) the expected magnitude of the adverse effects
that each hazard can cause, and (2) the weights to as-
sign to those effects, when creating an aggregate mea-
sure of risk.

 

(10,11)

 

 The rankers decide how to allocate
their resources in order to learn more about one,
some, or all of these risks. After that learning period,
the subjective probability distributions are updated
as a function of how readily the uncertainties yield to
such scrutiny. After completing each period, rankers
evaluate the return on their investment, measured in
terms of the reduction in their “confusion” about the
relative magnitudes of the risks. The model is imple-
mented in Analytica,

 

3

 

 and demonstrated here with
hypothetical scenarios, meant to capture some arche-
typal situations. We believe, however, that it can clar-
ify the nature of some risk-ranking tasks, even with-
out pursuing full computational solutions.

 

2. MODEL DESCRIPTION

2.1. Assumptions

 

For the sake of simplification, the following as-
sumptions are made in the current implementation of
the model:

1. Risks are stable over the prioritization pe-
riod. The ranking process may have been ini-
tiated by a perception that risks have changed
(as well as by a perception that they have
been misestimated). Whether or not that is
the case, no further changes are allowed dur-
ing the ranking process.

2. The risks can be represented along a single di-
mension, aggregating whatever attributes
rankers deem relevant.

 

(11–15)

 

 That dimension

3 Analytica Version 1.1.1, Lumina Decision Systems, Inc., 1997;
http://www.lumina.com/.
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has at least interval-scale properties. As
mentioned, the overall uncertainty regarding
the magnitude of a risk reflects the un-
certainty about both how to weight the at-
tributes of risk and how to characterize the
risk on each relevant attribute. Thus, it is pos-
sible to know risks very well (in terms of the
expected magnitudes of their effects, based
on the different attributes), but still not know
what to think about them (in terms of the dif-
ferent trade-offs that they present across the
attributes).

 

2.2. Model Overview

 

The model represents each risk by an SPD over
the risk measure. The risks are ranked according to a

 

ranking criterion

 

, representing some fractile of each
SPD (e.g., the median, 0.99). Each round of the risk-
ranking process involves devoting 

 

learning resources

 

to reducing uncertainties about the risks. The updat-
ing process could be Bayesian (if one is designing an
optimal process) or non-Bayesian (if one is predict-
ing an imperfect one). When the initial SPDs are bi-
ased, the learning process will tend to correct them,
perhaps increasing uncertainty. At the end of each
round, the 

 

residual confusion

 

 (RC) in the ranking is
measured by the overlap in the SPDs. The critical de-
sign decision is the 

 

allocation rule

 

 for spreading the
learning resources available for a round, across the
risks.

The initial SPDs are a state of nature, with which
the rankers must contend; so is the 

 

uncertainty reduc-
tion function

 

 (URF), describing how quickly uncer-
tainty decreases, as a function of the resources in-
vested in understanding a risk. The rankers can
control (1) how they rank the risks (given the SPDs),
(2) how they allocate those learning resources, (3)
how they update their beliefs after learning, and (4)
how they evaluate their RC. The next section formal-
izes these two states of nature and describes four de-
sign choices.

 

2.3. Model Parameters

 

2.3.1. States of Nature

Initial Estimates.

 

The model starts with a set of
hazards, characterized in terms of SPDs, reflecting
rankers’ beliefs about the magnitudes of the risks. As
mentioned, the uncertainties may reflect both ques-
tions of fact (how large each adverse effect is ex-

pected to be) and questions of value (how the effects
should be weighted). Analytical convenience favors
characterizing SPDs in standard terms (e.g., a normal
distribution, with specified mean and standard devia-
tion). However, any form of distribution is possible in
principle.

Initial SPDs can be biased by measurement er-
rors, theoretical misconceptions, and erroneous per-
ceptions of the facts.

 

(16–18)

 

 A model’s specification in-
cludes whether bias is suspected in the initial SPDs.

 

Uncertainty Reduction.

 

Barring systematic bias,
the uncertainty about a risk will decrease as a func-
tion of the resources invested in learning about it.
Figure 1 shows three such URFs. One is 

 

linear

 

, mean-
ing that uncertainty reduction is proportional to the
ranking resources spent. The second is 

 

concave

 

, re-
flecting cases where uncertainty reduction is initially
very easy, but gets harder as time goes on. The third is

 

convex

 

, reflecting cases with little initial progress, un-
til, after some significant investment, the risk quickly
reveals itself. Other functions could be developed for
specific risks, reflecting the nature of the relevant sci-
ence and rankers’ learning process.

 

2.3.2. Design Choices

Ranking Criterion.

 

The SPDs are translated into
rankings, by characterizing each by a common frac-
tile. That might be the mean (as a “best guess” at the
risk’s value), an extreme high fractile (as a “conserva-
tive” estimate), or any other fractile that reflected the
rankers’ values.

 

Attention Allocation Rules (AARs).

 

With simul-
taneous ranking, learning resources are divided
equally across the risks. With more sequential pro-
cesses, other rules allocate rankers’ attention to clar-

Fig. 1. Three possible uncertainty reduction functions. In the lin-
ear case, uncertainty decreases steadily as resources are invested;
in the concave case, the initial investment has disproportionate
marginal utility; in the convex case, one learns relatively little until
a significant investment has been made.
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ifying particular risks.

 

4

 

 A risk might be chosen at
random (e.g., to make the selection process unpre-
dictable to risk managers). Or, some special property
might draw attention. For example, rankers might fo-
cus on risks with the largest means or the largest 

 

n

 

th
fractiles, or with the greatest uncertainty or coeffi-
cient of variation. Attention might depend on recent
performance, such as focusing on risks that have had
recent anomalous events.

 

(19)

 

 Slovic, Fischhoff, and
Lichtenstein

 

(20)

 

 discuss the attention drawn by events
with high “signal value,” which observers may fear
signals a change in the hazard, whose risk level needs
to be reassessed. Risks with great uncertainty should
be particularly likely to produce such unpleasant sur-
prises (and less noticed pleasant ones).

 

Updating Process.

 

Uncertainty reduction pro-
ceeds by combining new information with the initial
SPDs in order to get posterior SPDs. Bayesian updat-
ing can be assumed, either when the ranking process
is required to proceed that way or when it is expected
to do so naturally (at least to a first approximation).
Given the power of Bayesian inference, our model
focuses on it and on the use of conjoint distributions,
with which updating is computationally simple. How-
ever, individuals are not always Bayesians. Some-
times, tiny bits of new information swing opinions; at
other times, people hold tenaciously to old beliefs,
even in the face of great counterevidence. The model
can accommodate such possibilities by the simple ex-
pedient of overweighting or underweighting new ev-
idence, in a Bayesian calculation. Other updating
rules are also possible.

 

(21–23)

 

Ranking Evaluation Criteria.

 

Risk ranking is
considered successful to the extent that it reduces the
overlap among the SPDs describing different risks.
The metric for the overlap between the SPDs for two
risks, A and B, is the probability that a point drawn
randomly from A’s SPD will be larger than a point
drawn randomly from B’s SPD. If two SPDs overlap
completely, then the Prob[Risk A 

 

�

 

 Risk B] 

 

�

 

 0.5; if
A dominates B (Fig. 2A), then Prob[Risk A 

 

�

 

 Risk
B] 

 

�

 

 1; if A is stochastically larger than B (Fig. 2B),
then 0.5 

 

�

 

 Prob[Risk A 

 

�

 

 Risk B] 

 

�

 

 1. We will use
the absolute difference between Prob[Risk A 

 

�

 

 Risk
B] and 0.5 to reflect how much two distributions over-

4 Given N risks, with total ranking resources RR, and URF f(x):
For sequential ranking, risk reduction for the focal risks is y �
f(RR), with no reduction for other risks. For simultaneous rank-
ing, uncertainty reduction is y � f(RR/N). If the risk distribution
is normal, the standard deviation after the ranking process is di �
f(RR/N). If there is bias in the initial ranking, this is equivalent to
applying n � [di

2/(di � y)2] � 1.

 

lap. By this measure, larger values indicate less
overlap and, hence, clearer priorities. Summing this
metric over all 

 

N

 

 pairs of the 

 

n

 

 SPDs, and then
subtracting from the maximum possible overlap (

 

n

 

coincidental distributions), produces a measure for
the overall rankability of the risks, or the RC. It
approaches zero as the SPDs become completely
distinct.

 

5

 

3. MODEL APPLICATION:
UNBIASED INITIAL SPDS

 

This section illustrates the model by applying it
to a simple case of ranking three risks. Different
model features are then manipulated, in order to
show the ranking process’s sensitivity to them. For
expository purposes, it starts with the simplest (and
uninteresting) case of very distinct initial SPDs. It
proceeds to risks with stochastically dominant distri-
butions, and then to ones without stochastically dom-

5 This rule treats overlap among large risks the same as overlap
among small ones. This would befit a situation in which, say, it was
as important to decide that a risk no longer needed attention as to
decide that another risk really needed it. The rule avoids assign-
ing absolute-scale interpretations to risk values. Providing the
measures could be assigned, it could be replaced by other rules
(as could other discretionary features of the model). 

Fig. 2. Illustrations for calculation of residual confusion index: (A)
Risk A dominates Risk B; (B) Risk A stochastically dominates
Risk B.
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inant SPDs. The initial SPDs are assumed here to
have no systematic bias, in the sense of being cen-
tered on the true SPD. Thus, ranking should tighten,
but not shift, the distributions. Section 4 allows for bi-
ased initial beliefs. In such cases, information gather-
ing could increase uncertainty, even as it brings the
rankings closer to their desired values.

 

3.1. Very Distinct Initial SPDs

 

This is the simplest case and an unlikely candi-
date for an actual risk ranking. Not only are the initial
SPDs unbiased, but the uncertainties of the SPDs
generate minimal overlap among the risks. Figure 3A
shows such a case, with the three risks being 

 

N

 

(40, 2),

 

N

 

(58, 3), and 

 

N

 

(80, 4), respectively. Here, the choice
of ranking criterion (or fractile) has no effect on the
initial prioritization. The choice of AAR will affect

which risks’ uncertainties are reduced. The applicable
URFs will determine how far that reduction pro-
ceeds. However, the ranking will be the same
whether one SPD is tightened a lot or each is tight-
ened some.

 

3.2. Stochastically Dominant Initial SPDs

 

Figure 3B shows SPDs for a more realistic case,
with overlap among distributions, having 

 

N

 

(10, 7),

 

N

 

(20, 6), and 

 

N

 

(30, 5). The stochastic dominance
among these distributions means that the initial rank-
ing is the same by any fractile. However, rankers
might still be uncomfortable with the degree of over-
lap among the distributions. As a result, our simula-
tions focus on how RC proceeds with different allo-
cations of attention. We used 

 

y

 

 

 

�

 

 ln(

 

x

 

 

 

�

 

 1) as the
URF, indicating cases where uncertainty initially re-
duces quickly.

Figure 4 shows how RC declines with the invest-
ment of ranking resources according to different
AARs, either for 100 resource units (Fig. 4A) or just
the first 5 units (Fig. 4B). These resources are in-
vested either equally in all three risks simultaneously
or exclusively in one risk. In this case, as more rank-
ing resources are invested, the RC value decreases,
both for the simultaneous strategy and for any of the
three sequential ranking strategies (i.e., looking at
just a single risk during this ranking period). How-
ever, the extent to which the overlap among the SPDs
decreases depends on the strategy: With 4 or more re-
source units, RC is most efficiently reduced with si-
multaneous learning, and increasingly so. An intui-
tive account of this pattern is that with any
reasonable level of resources, each risk receives
enough attention to make a dent in its uncertainty.
However, when resources are limited (Fig. 4B), se-
quential risk ranking can be more effective, espe-
cially when targeted at the risk causing the greatest
confusion. In this case, that is Risk 2, which overlaps
both of the other risks. For this reason, when re-
sources are very limited, concentrating them all on
Risk 2 is more efficient than concentrating on Risks 1
or 3 (or spreading them across the three risks
equally). However, when more resources are avail-
able, they are wasted if spent just on that risk. By trial
and error, we found an approximate optimum (not
shown): devoting half the resources to Risk 2 and
equal parts of the remainder to Risks 1 and 3. It is
5–10% more efficient than simultaneous learning for
5–40 resource units, then indistinguishable.

With simultaneous search, the risks retain their
Fig. 3. Subjective probability distributions with (A) no overlap;
(B) stochastic dominance; and (C) no stochastic dominance.



 

344 Long and Fischhoff

 

initial ranking whatever fractile is used. This follows
from the absence of bias: Learning about all three
risks reduces their uncertainty, while maintaining
their relative ordering. Sequential learning can, how-
ever, change priorities. The risk that gets all the at-
tention will shrink its distribution. At some point,
that shrinkage will be so great that stochastic domi-
nance no longer exists. In this example, with 30 re-
source units, focusing on Risk 2 changes the order
from (1, 2, 3) to (2, 1, 3) for rankers using the 99th
fractile—as a result of eliminating the possibility of
very high values for Risk 2. By the same criterion, fo-
cusing on Risk 3 can change the order to (1, 3, 2), by
reducing its assessed chance of having very high
values.

Figure 5 shows the effects of assuming different
URFs on RC, using the three URFs of Fig. 1. Figure
5A depicts the initial stages of simultaneous learning.
The convex curve, [exp(0.2

 

x

 

) 

 

� 

 

1], initially reduces
RC rather little. The linear function (

 

y

 

 

 

�

 

 0.5

 

x

 

) does
much better

 

6

 

 and the concave URF [ln(

 

x

 

 

 

�

 

 1)] better
still. RC with the convex URF eventually reaches
that obtained with the concave function. However, in
this case, that occurs with a large expenditure of re-
sources. As a result, where the state of nature pro-
vides a concave learning function, simultaneous
learning is initially quite efficient.

6 The reduction is not strictly linear, or even monotonic, because of
randomness in the simulation.

Fig. 4. Effects of the choice of attention allocation rule on change in residual confusion for three distributions with stochastic dominance
(Fig. 3B). Simultaneous learning devotes resources equally to al three risks. The other three represent versions of sequential search devoting
all resources to one risk for this round: (A) 100 resource units; (B) 5 resource units.
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Figure 5B provides another reflection on this sit-
uation. It shows the results of sequential learning, fo-
cused on Risk 1. The relative efficacy with the differ-
ent URFs is in the same order as with simultaneous
learning. The overall decline with each URF is less,
however, because all attention is invested in Risk 1,
initially suspected of having the least risk. (The pic-
ture would be similar with Risk 3, initially suspected
of having the largest risk.) The asymptotic RC here is
much higher than with simultaneous learning (Fig.
5A).

Thus, with simultaneous learning, the different
URFs will reduce uncertainty to different extents, but
won’t affect the relative priority (as seen with the
concave URF before). With sequential learning, how-
ever, rankings can change with any URF, provided

enough resources are invested in reducing the uncer-
tainty about a given risk.

 

7

 

3.3. Non-stochastically Dominant Distributions

 

Figure 3C shows such a case, with 

 

N

 

(10, 10),

 

N

 

(20, 30), and 

 

N

 

(50, 8). It reflects one large risk (Risk
3) that is understood very well (as might happen if it
had been studied heavily), along with two somewhat
smaller risks (Risk 1 and Risk 2) that are understood
less well. The same concave URF is used as before.
As seen in Fig. 6, the AAR makes a critical difference

7 Think of the movement of an extreme fractile, if one distribution
is tightened drastically, while the other two are left as uncertain as
before.

Fig. 5. Effect of the choice of uncertainty reduction function on residual confusion, with stochastically dominant initial SPDs (Fig. 3B): (A)
simultaneous learning; (B) sequential ranking, focused exclusively on Risk 1.
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in reducing RC. In this simulation, targeting Risk 1 or
Risk 3 makes little difference, because each contrib-
utes little to the confusion in the set as a whole. Tar-
geting Risk 2 is a much more effective strategy, even
for small resource investments. As resources increase
(to about 15 units), simultaneous ranking becomes
about as good, by distinguishing Risks 1 and 3 from
Risk 2. Comparing Fig. 6 with Fig. 4A, it can be seen
that RC starts much higher here and declines less, in
both relative and absolute terms. This is a property of
the situation. Even investing significant resources in
understanding Risks 1 and 3 will only distinguish
them from one another, while still leaving them over-
lapping Risk 2 entirely. Thus, when performance is
measured by RC, learning about Risk 2 is the clear
“best buy.”

Table I shows rankings both before and after
learning. In this case, the initial rankings depend on

the fractiles chosen, reflecting the overlap in the dis-
tributions. Given the great uncertainty about it, Risk
2 is worst for high fractiles. The one shaded cell shows
the only case where priorities change with learning,
compared with initial ones. Thus, in this example, de-
spite the great uncertainty about the risks, the “ac-
tion” in risk ranking is in the choice of fractile. Once
that choice is made, the rankings are relatively set,
even though learning can still reduce RC. The one
reversal shows a case where learning a lot about a
highly uncertain risk can reduce its ranking—in a
case where its initial SPD is unbiased and ranking is
by a high fractile.

If the state of nature pointed to a different URF,
then it could be substituted for the one that we used
in this simulation. If the URF were uncertain, then al-
ternatives could be explored, as with the previous ex-
ample (Section 3.2).

Fig. 6. Effects of the choice of attention allocation rules on residual confusion with initial subjective probability distributions lacking sto-
chastic dominance (Fig. 3C).

 

Table I.

 

Effect of AAR on Priorities with Nondominating Initial SPDs

 

Priority after learning

Fractiles
Initial

priority Simultaneous
Sequential
with Risk 1

Sequential
with Risk 2

Sequential
with Risk 3

1% 2 

 

�

 

 1 

 

�

 

 3 2 

 

�

 

 1 

 

�

 

 3 2 

 

� 1 � 3 2 � 1 � 3 2 � 1 � 3
5% 2 � 1 � 3 2 � 1 � 3 2 � 1 � 3 2 � 1 � 3 2 � 1 � 3

50% 1 � 2 � 3 1 � 2 � 3 1 � 2 � 3 1 � 2 � 3 1 � 2 � 3
90% 1 � 2 � 3 1 � 2 � 3 1 � 2 � 3 1 � 3 � 2 1 � 2 � 3
99% 1 � 3 � 2 1 � 3 � 2 1 � 3 � 2 1 � 3 � 2 1 � 3 � 2

Note: 100 units of ranking resources.
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4. MODEL APPLICATION:
BIASED INITIAL SPDS

4.1. Systematic Bias

Sometimes, initial beliefs are suspected of being
biased. For example, it may seem as though research-
funding priorities have unduly focused on studying
some physical processes, or that publication pro-
cesses have unduly favored results creating a particu-
lar picture of risk. Those suspicions are, however, too
diffuse to be captured in the SPDs.8 This section con-
siders one extreme type of suspicion: systematic bi-
ases, which have the same direction and magnitude
for all risks. Such a condition might arise, say, when
people make the same mistake all the time (e.g., look-
ing for trouble leads them to exaggerate all risks;
their analyses share an erroneous parameter esti-
mate). The next section briefly considers the other ex-
treme, random biases. 

As an example of systematic bias, we took the
initial SPDs of Fig. 3C, but altered the true SPDs (by
biasing the mean of the distribution upward by a fac-
tor of two), while leaving the standard deviation the
same. In model terms, learning about a risk means
sampling observations from the true SPD, then com-
bining those observations with the biased prior in a
Bayesian manner. That process will tend to reveal
(and reduce) the bias. Depending on the circum-
stances, the overall result might be to increase or de-
crease uncertainty. Figure 7 shows the effect of learn-
ing on estimates of the mean for Risk 1, as a function
of investing resources in Risk 1 alone or in all three
risks simultaneously. The same (concave) URF is
used. The mean approaches the unbiased value (the
lower dashed line) with either AAR, but does so
more quickly when learning focuses on Risk 1 than
when it is distributed over all three risks. A similar
pattern emerges with the other two risks, with fo-
cused learning being moderately more efficient than
simultaneous. Thus, for this case, in which all risks are
biased in the same way, simultaneously learning
seems advisable—in order to learn something about
each risk—rather than to focus on any one. Of course,
less progress would be made if the new information
were also obtained from biased distributions (as
might happen if rankers relied on the same faulty
sources).

Figure 8 shows RC, investing the same resources

8 They might, however, be expressed in second-order distributions,
expressing epistemic uncertainty(24)—a possibility that we will not
consider here.

in sequential or simultaneous learning. Simulta-
neous learning shifts all distributions in the same di-
rection. Given the common bias, that alone would
leave RC relatively constant. However, a given
amount of resources will update a distribution with
small initial variance more than a distribution with
large initial variance. As a result, Risk 2 moves to-
ward its mean more slowly than do Risk 1 and Risk 3.
That increases its overlap with Risk 3, as well as the
overlap of Risk 1 and Risk 3—leading RC to increase
with such simultaneous learning. Risk 3’s initial
mean is 50 and its true mean is 25, closer to Risk 2’s
initial mean. As a result, learning just about Risk 3
will move its SPD toward that for Risk 2, increasing
their overlap (and RC). As mentioned, Risk 2’s ini-
tial SPD has a mean of 20, while its true SPD has a
mean of 10, the same as Risk 1’s initial mean. Thus,
learning about just Risk 2 will shift the mean of its
SPD toward that of Risk 1, greatly increasing the
contribution to RC of that overlap, while shifting its
SPD away from Risk 3, somewhat decreasing the
contribution to RC of that overlap. At the same time,
reducing Risk 2’s uncertainty will decrease its over-
lap with the other two SPDs, somewhat reducing RC.
The net effect is the small overall reduction in RC
shown in Fig. 8 (Sequential with Risk 2). Reducing
the bias in Risk 1 still leaves it overlapping Risk 2;
however, both the shift and the reduced uncertainty
make it more distinct from Risk 3, slightly reduc-
ing RC.

Thus, learning about these risks does little to
reduce rankers’ confusion and may increase it—
because they were less confused initially than they
had a right to be. Where bias is suspected, RC does
not provide a criterion for evaluating the efficacy of
different strategies.

If these risks are ranked by the means of their
SPDs, their initial order is (1, 2, 3). It remains that
way whatever AAR is used. Simultaneous learning
shifts all three means in tandem. None of the sequen-
tial learning rules pulls the focal mean past one of the
others; as a result, their order stays the same. Initial
ranking by the 95th fractile is (1, 3, 2) because of Risk
2’s long right tail. The order will change to (1, 2, 3) if
enough is learned about Risk 2 to pull in its tail and
shift the distribution to the left.

4.2. Random Bias

Systematic bias describes one extreme. Another
extreme involves biases that are completely random,
in both direction and magnitude (over some range of
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possibilities). In this case, all the complications dis-
cussed above could happen, with the results of the
simulations (and the ranking processes that they rep-
resent) being even less predictable. As before (Sec-
tion 4.1), learning about the risks may appropriately
increase uncertainty.

If bias is suspected, then it may pay to do some
exploratory learning about the risks. If the width of
the SPDs increases, then bias should be more
strongly suspected. If the SPD shifts are in a common
direction, then systematic bias is more likely. The
model built for that situation could then incorporate

these assumptions when trying to design a ranking
process or to predict its operation.

5. CONCLUSIONS AND
POLICY IMPLICATIONS

Individuals, organizations, and societies often
need priorities for addressing the myriad risks to
their health, safety, and environment. Deciding on
those priorities should help them to focus their search
for ways to reduce risk. When risks are uncertain, so
may be these priorities. Learning about risks may al-

Fig. 8. Residual confusion with biased initial and an unbiased learning process, for simultaneous learning and sequential learning, focused
on each risk.

Fig. 7. Change in degree of bias, with simultaneous ranking and sequential ranking focused on learning about Risk 1.
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low reducing residual uncertainty about both their in-
dividual magnitudes and their respective rankings.

We offer a model for such processes. It assumes
an iterative process, in which limited resources are
devoted to uncertainty reduction during successive
learning periods, and rankings are revised in the light
of what is learned. The model characterizes each
round in terms of two states of nature, which people
cannot control, and four design parameters, which
they can. The states of nature are (1) the uncertainty,
expressed in SPDs (which might be biased) and (2)
the pace with which uncertainty shrinks, when re-
sources are invested in learning about a risk (ex-
pressed in URFs). The design parameters are (1) the
AAR, describing how learning resources are allo-
cated across risks; (2) the ranking criterion, or fractile
used to characterize the SPDs, for ranking purposes;
(3) the Bayesian (or other) updating rule for combin-
ing new information about a risk with existing infor-
mation; and (4) the RC measure for evaluating
performance (which, however, is not directly inter-
pretable when initial SPDs are suspected of bias).

Demonstrations of the model focus on two of the
many possible ways in which attention can be allo-
cated (during a round): simultaneous learning, where
all risks receive equal attention, and sequential learn-
ing, where all learning resources are allocated to a
single risk (for that round). The demonstrations con-
sider the learning associated with three classes of the
uncertainty reduction function: linear, concave, and
convex.

The impact of these factors was examined in the
context of five different initial conditions. Three of
these assumed no underlying bias in the initial SPDs:
(1) virtually no overlap among the distributions, (2)
stochastic dominance, and (3) no stochastic domi-
nance. The third of these situations was reconsidered,
assuming bias in the initial SPDs that was either sys-
tematic or random.

In all cases, a Bayesian updating function was
used to integrate what is learned with what was ini-
tially believed. For computational simplicity, we also
restricted ourselves to one set of conjoint distribu-
tions (normal). A straightforward way to relax the
optimality assumption is to use Bayesian updating,
but over- or underweight the new information,
thereby representing rankers who are too quick or
slow to change.

Also for simplicity’s sake, demonstrations have
used only three risks. However, we hope that they il-
lustrate the key features of the model and how it can
illuminate the structure of risk-ranking tasks. In some

cases, just characterizing a ranking process in these
terms may clarify how efficient, and appropriate, it is.
For example, it may reveal whether the critical uncer-
tainties are about facts or values. It might forestall
large-scale data collection when there is little agree-
ment about the risk metric, the ranking criterion, or
the performance measure.

In other cases, though, it may be necessary actu-
ally to run the numbers. For example, in the example
with stochastic dominance (Section 3.2), we found
that the choice of AAR influenced both the final
rankings and the efficiency of ranking strategies. With
fewer resources, devoting them all to one risk could
be more efficient than dividing them equally across
the risks. With greater resources, however, simulta-
neous learning would be more efficient than sequen-
tial. In the example without stochastic dominance
(Section 3.3) the choice of AAR greatly affected how
far RC was reduced. The same was true when there
was bias in the initial SPDs. Resources could be
wasted if these issues were not sorted out before a
ranking exercise was designed—or its results were in-
terpreted. Even in our simple examples, these rela-
tionships would be hard to anticipate without explicit
quantitative modeling.

We see value in characterizing stylized situations
like those considered here. Doing so provides a way
to think about the nature of risk ranking, including
what one hopes to—and realistically can—gain from
it. We also sought, however, to characterize the
model clearly enough to allow its operationalization
for specific settings. We now sketch how each of the
model’s parameters might be approached in an appli-
cation, either designing a process or predicting its ef-
ficacy. These steps could be followed for the specific
risks under consideration or for a small set of risks
with properties like those in the full set (e.g., hetero-
geneous variance, no systematic bias, many risks clus-
tered near the bottom of the set). Such archetypes
might provide a useful feeling for the results of a full-
fledged application.

States of Nature
SPDs: Follow accepted procedures for prob-

ability elicitation.(18,25) Elicit suspicions of
bias, perhaps in the form of second-order
distributions.

URF: Consider the state of the science regard-
ing each risk. How ripe is it for summariza-
tion?(26) What kinds of diagnostic tests are
available (e.g., just rodent bioassays or also
bacterial tests)? How quickly can novices be
brought up to speed?
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Design Choices
Ranking criterion: Elicit rankers’ preferences

for the fractile best suited to characterizing
uncertain risks.

AAR: Start with a suite of stylized rules, in-
cluding entirely systematic and sequential
learning, along with promising hybrids.
Translating these rules into URF terms may
be challenging, even if the general shape of
the URF is fairly clear. Once the other terms
of the model have been set, backing out the
best AARs is a logical way to optimize its
application.

Performance measure: While simple, our RC
metric treats distributional overlap the same,
at all points on the risk continuum. It means
that all confusion is equally troubling. Rank-
ers might, however, choose to pay more atten-
tion to confusion among larger risks. Doing so
will require a risk metric with more than inter-
val-scale properties.

Updating: Although the designers of a ranking
process might prescribe a Bayesian ap-
proach, other expectations might be more re-
alistic. In that case, updating is a state of
nature, knowledge of which will help in pre-
dicting how a ranking process will actually
behave.

Although the model is fairly complex already,
we can see several elaborations that could improve its
fidelity, facilitate its application, and increase its de-
sign flexibility. One is to include variability as a
source of the uncertainty in an SPD. Because vari-
ability is more directly estimated than uncertainties
derived from other sources, considering it should re-
fine the analysis. A second elaboration is to distin-
guish uncertainty about facts and about values. Part
of a ranking process is determining what matters
most, when integrating multiple attributes into a
common measure of risk. Thinking hard about the
ranking of some risks may teach useful lessons about
the meaning of “risk” in general. Therefore, focused
learning about a subset of risks might reduce confu-
sion about the set as a whole. As a result, one hybrid
strategy is to look closely at a few risks, in order to re-
solve the definition of “risk,” then to think simulta-
neously about all risks in those terms.

In such ways, a model like this one can take ad-
vantage of experiences with risk ranking—and iden-
tify aspects of those processes that need to be better
understood. Thus, one might look for structural prop-

erties of actual risk rankings that have been more or
less satisfactory for participants. Are value issues
brought to the fore, or left unarticulated beneath dis-
cussions of data? Has the technical staff provided co-
gent summaries of the issues, so that the rankers can
learn a lot quickly—even if it would take them a very
long time to acquire great mastery (making the URF
more concave)? Is increased uncertainty an accept-
able conclusion, when biased priors (and premature
closure) are possibilities? Have the rankers been re-
quired to look at all the risks, when sequential evalu-
ation of a few would have been more effective?
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