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What Number is “Fifty-Fifty”?: Redistributing Excessive
50% Responses in Elicited Probabilities

Wändi Bruine de Bruin,1∗ Paul S. Fischbeck,2,3 Neil A. Stiber,4 and Baruch Fischhoff2,3

Studies using open-ended response modes to elicit probabilistic beliefs have sometimes found
an elevated frequency (or blip) at 50 in their response distributions. Our previous research(1−3)

suggests that this is caused by intrusion of the phrase “fifty-fifty,” which represents epistemic
uncertainty, rather than a true numeric probability of 50%. Such inappropriate responses
pose a problem for decision analysts and others relying on probabilistic judgments. Using an
explicit numeric probability scale (ranging from 0–100%) reduces thinking about uncertain
events in verbal terms like “fifty-fifty,” and, with it, exaggerated use of the 50 response.(1,2)

Here, we present two procedures for adjusting response distributions for data already collected
with open-ended response modes and hence vulnerable to an exaggerated presence of 50%.
Each procedure infers the prevalence of 50s had a numeric probability scale been used, then
redistributes the excess. The two procedures are validated on some of our own existing data and
then applied to judgments elicited from experts in groundwater pollution and bioremediation.
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The 50-50-90 rule: Any time you have a 50-50 chance
of getting something right, there’s a 90% probability
you’ll get it wrong.

—Joke of the Day, February 16, 2001(4)

Probabilities are a standard way to describe sit-
uations of uncertainty and risk. Using probabilities
appropriately is essential to formulating and commu-
nicating beliefs. Risk and decision analysts depend
on explicit probability assessments to build models,
predict the results of complex interactions among
chance events, as well as creating decision trees, and
identify the appropriate courses of action in uncer-
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tain situations.(5) These efforts are threatened when
responses to probability questions reflect something
other than probabilistic beliefs. In previous work, we
have identified one potential anomaly: using 50 as
shorthand for the verbal phrase “fifty-fifty,” reflect-
ing a feeling of epistemic uncertainty—or not know-
ing what number to use(6)—rather than the quantity
50%.(1–3) We initially observed such nonnumeric use
of 50 in open-ended interviews.(1,3) When asked to
explain their probability responses, respondents who
say “50” are more likely to add “I don’t know” or
“either it happens or it doesn’t” than those who use
other numbers.(7) Failing to distinguish nonnumeric
from numeric 50 responses would result in a “blip” of
50s relative to the rest of the response distribution. In-
deed, an apparent excess of 50s has been observed in
open-ended studies eliciting judgments about a wide
variety of topics, including the risks of breast cancer,
lung cancer (from smoking), and mortality.(8–10)

In addition to respondents’ own reports about
the meaning of their 50 responses, evidence of
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Fig. 1. The probability scale.

nonnumeric use comes from several covariates of the
prevalence of 50s.(1–3) The use of 50 is related to re-
sponse mode, question content, and respondent char-
acteristics. For example, more 50s are observed with
an open-ended response mode than with a probability
scale, while leaving the rest of the response distribu-
tion relatively unchanged. An open-ended probabil-
ity question asks respondents to mention a number
between 0% and 100%, encouraging them to think
about uncertainty in verbal terms, making “fifty-fifty”
more likely to come to mind as an expression of epis-
temic uncertainty. A response scale that explicitly
presents numeric options (such as shown in Fig. 1) di-
minishes the availability of verbal probability expres-
sions, including “fifty-fifty,” encouraging respondents
to resolve their epistemic uncertainty. Consistent with
this interpretation, an “absolutely no idea” response
option, if offered, is used less with a probability scale
than with an open-ended one.(1,3)

Furthermore, singular questions (e.g., “What is
the probability that a Californian resident will die in
the next earthquake?”) elicit more 50s than equiva-
lent distributional ones (e.g., “What is the percentage
of Californian residents that will die in the next earth-
quake?”). The latter appears to evoke more analyti-
cal, and more numeric, thinking,(11−16) thereby reduc-
ing epistemic uncertainty and the use of nonnumeric
50s to express it.

Use of 50 increases with questions that could gen-
erate epistemic uncertainty, such as those addressing
threatening topics. We found more 50s in response
to probability questions about negative events with
lower perceived control.(2,3) A national sample of
teens produced particularly large 50 blips when as-
sessing their risk of dying in the next year or before
age 20.(17) A nonnumeric 50 provides an escape from
contemplating such events, leaving any epistemic un-
certainty unresolved, while still providing a number.
Indeed, studies in survey design have found that ques-
tions covering threatening topics generally elicit more
nonresponses, such as “don’t know” answers.(18)

Finally, 50s are given more frequently by teens
and lower-education adults—individuals who might

understand probabilities less well.(1,3) Use of 50 is neg-
atively correlated with numeracy, even after partialing
out age and education.(1,3) Many of these 50s may not
be intended as numeric.

These results suggest that surveys may be de-
signed to discourage the nonnumeric use of 50 by us-
ing probability response scales (e.g., Fig. 1), as well as
by providing an “absolutely no idea” option. Phrasing
questions in distributional terms may also stimulate
more numeric thinking. However, even with deliber-
ate design, it may be impossible to eliminate nonnu-
meric 50s. Some unique events (e.g., about one’s per-
sonal risk) may have no distributional equivalent. In
addition, epistemic uncertainty may be unavoidable
with studies of risk that deal with threatening and of-
ten uncontrollable events. To design education pro-
grams, the public’s perception of these risks needs to
be elicited—including those individuals with a poor
understanding of probability and a tendency to say
“50.” Finally, previous surveys, unaware of this is-
sue, have used open-ended response modes, which
has clouded interpretation of their results. Future
studies may be constrained to use an open-ended re-
sponse mode (e.g., when administered by telephone)
or choose to do so, in order to assess the extent of
epistemic uncertainty.

When the nonnumeric use of 50 cannot be pre-
vented, investigators need some way to distinguish
between the two meanings of 50 lest they misinter-
pret respondents’ intent. If some 50 responses do not
represent the numeric value of 0.5, then it is mis-
leading to treat them as such in statistical summaries
of respondents’ beliefs or in subsequent risk and
decision analyses. For example, studies using open-
ended questions have shown an excessive and strik-
ing use of 50s for low-probability events. Rather than
overestimation, these 50 responses could reflect epis-
temic uncertainty. Such nonnumeric use of 50 may
have contributed to the public’s seeming overesti-
mation of the probability of a smoker getting lung
cancer,(8) cited by tobacco companies as evidence
that smokers had not been led to underestimate these
risks.
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On the other hand, deleting all 50 responses from
the analyses ignores those respondents who actually
intended to say “50%” as an honest reflection of
their numeric beliefs. This article offers two meth-
ods to reanalyze open-ended data so that it is as
if they were collected with a probability response
scale, correcting for the prevalence of nonnumeric
50s. Each estimates the reduction in 50 responses that
would have been achieved with such a scale. The tech-
niques are calibrated on our own data(2) and then used
to correct probability judgments of experts regard-
ing uncertain processes of groundwater pollution and
bioremediation,(19) which were elicited with an open-
ended response mode.

1. ANOTHER LOOK AT OUR DATA:(2) WHAT
NUMBER IS “FIFTY-FIFTY”?

The differences in response distributions with
open-ended and probability scale response modes
suggest that the two elicit different cognitive pro-
cesses, affecting respondents’ treatment of epistemic
uncertainty. When asked to generate their own prob-
ability, respondents may think in more verbal terms,
raising vague beliefs captured by the verbal phrase
“fifty-fifty.” A nonnumeric 50 response reflects this
epistemic uncertainty, while at the same time using a
seemingly numeric expression that follows conversa-
tional norms set by the researcher.(20−23) However, it
is not intended, and should not be interpreted, as a
precise numeric probability.

One might ask, then, what happens with these
vague beliefs when probability response scales are
used (e.g., Fig. 1). It is possible that probability scales
fail to resolve epistemic uncertainty, leading respon-
dents to select tickmarks that might not have occurred
to them naturally.(24−27) If so, then nonnumeric 50s
would be a better indication of respondents’ actual
thinking, providing a window into qualitative aspects
of their beliefs. Exploiting this possibility requires
identifying the rate of nonnumeric 50s, as does re-
stricting analyses to numeric 50s.

Alternatively, seeing a full set of numeric re-
sponse options on a scale could help respondents (who
would have said “50” to an open-ended question) to
reduce their epistemic uncertainty. Those who resolve
it completely will arrive at a specific number. Others
may narrow it down to an interval (e.g., 10–20%, 45–
50%).5 Whereas a nonnumeric 50 would have been

5 More research is needed to understand whether the degree of
epistemic uncertainty, as reflected in such a range,(6) affects the
use of 50.

given as an open-ended response, a probability scale
could lead to marking a number in that range. In that
case, the scale would more accurately capture respon-
dents’ numeric beliefs, which may not be close to 50%
at all.

Thus, respondents who use a nonnumeric 50 with
an open-ended response mode may select a different
response on a probability scale. There are also rea-
sons for numeric responses to cluster in the middle
range (e.g., between 40–60%). With any quantitative
scale, respondents gravitate toward the middle,(28)

which would be 50 with a 0–100% probability
response range. With open-ended probability ques-
tions, 50 would be accentuated by the availability of
the verbal phrase “fifty-fifty.” Whatever the reason
for the salience of 50, it may be used as an anchor
from which insufficient (or even no) adjustment is
made.(25,26,29) In addition, people’s insensitivity to
middle-range probabilities, when weighing them for
decision-making purposes,(30) may encourage saying
“50” for any answer that is “somewhere in the mid-
dle.” Finer distinctions may not seem worth making.
Such “midpoint effects” would cluster imprecise
middle-range numeric probabilities around the
50 response.

Having to generate one’s own probabilities (as
with an open-ended response mode) should draw
more mid-range responses toward 50, relative to a
probability scale that explicitly offers 101 tickmarks,
for different probabilities. While 50 is salient in the
open-ended format, a scale offers alternatives for re-
spondents looking for a response “somewhere in the
middle.” They should find it just as easy to mark a
number near 50 as 50 itself. As a result, the proba-
bility scale would smooth the 50 blip by distributing
responses more equally in the 40–60% range.

We believe, however, that nonnumeric 50s reflect
more than just a mechanical midpoint effect. More
likely, they often reflect epistemic uncertainty—not
knowing exactly what number to use. If so, a proba-
bility scale that helped resolve this uncertainty should
encourage numeric responses using the entire range
(e.g., 0–100%).

Two of our studies(2) posed the same questions
with open-ended and scale formats, allowing us to
estimate the rate of nonnumeric 50s with the for-
mer. Comparing these two response distributions also
allows estimating the responses that would have been
given by respondents who provided a nonnumeric 50
with the open-ended format had a scale been pre-
sented instead. Specifically, this comparison could
indicate whether the probability scale leads to a
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Table I. Percentage of Observations in
the Lower, Middle, and Upper Range(2)

Open-Ended Probability Scale

Question p ≤ 0.35 Middle p ≥ 0.65 p ≤ 0.35 Middle p ≥ 0.65

Study 1
Break-in 77 17 6 81 13 6
Cancer by 80 42 33 26 42 21 37
AIDS from sex 61 22 17 70 25 5
Bomb at university 84 9 7 88 5 6

Study 2
Lightning 98 2 0 100 0 0
AIDS from sex 29 27 44 43 19 39
Breast cancer 46 41 13 63 24 13
Alive at 50 0 33 67 7 17 76
Cancer by 40 70 30 0 74 22 4
Lung cancer from 21 36 43 22 39 39

smoking

redistribution of the nonnumeric 50s over the middle
or over the entire response range. Table I presents the
proportion of responses in the middle range for each
question in the open-ended and scale conditions of
two studies.(2) Study 1 asked (1) “What is the probabil-
ity of the university being closed at least once this year
because of a bomb threat?” (2) “What is the probabil-
ity of someone getting AIDS if they have sex without
protection?” (3) “What is your personal probability
of developing cancer by age 80?” and (4) “What is
the probability of someone breaking into your room
or home and stealing something some time this year?”
Probability questions in Study 2 considered “What is
the probability that . . . ” (1) “You will be struck by
lightning some time this year?” (2) “You will develop
cancer by age 40?” (3) “Someone who smokes a pack
or more of cigarettes a day will develop lung cancer?”
(4) “Someone will get AIDS if they have sex without
protection once with someone who is infected?” (5)
“An average woman will be diagnosed with breast
cancer in her lifetime?” and (6) “You will be alive
at age 50?” Both studies had an open-ended and a
scale condition. Open-ended questions instructed re-
spondents to “write down a number between 0% (no
chance) and 100% (certainty)” in a blank space. The
scale questions asked respondents to place a mark on
a probability scale (Fig. 1).

To increase the chances of finding a midpoint ef-
fect, we defined “somewhere in the middle” broadly
as between 35–65%. If the open-ended response
mode merely encourages saying “50,” rather than
other values in the middle range, there should be sim-
ilar percentages of 35–65% responses with the two
response modes. Table I shows that this was not the
case. For eight of the nine probability questions, the

open-ended condition evoked a higher percentage of
mid-range probabilities, suggesting that the additional
50s were drawn from responses that would have been
outside the midrange with a probability scale. (Al-
though both studies had the same trend, the open-
ended response mode elicited significantly more mid-
range probabilities only in Study 2(χ(1) = 6.05, p <

0.05.) Thus, the 50 blip with open-ended questions
seems to reflect more than just a mechanical midpoint
effect.

The remainder of this article offers two methods
to deal with the potential excess of 50s obtained with
open-ended response modes. Each first assesses the
percentage of nonnumeric 50 responses (i.e., those
being drawn from outside the middle range), then re-
distributes them as if a numeric probability scale had
been used. The first method uses the beta function,
the second one an averaging heuristic.

2. BETA METHOD

The first method fits a curve to the histogram
of observed open-ended responses,6 assuming that it
represents the form of the underlying distribution. To
this end, we chose the beta family of functions. The
beta distribution is used extensively to model uncer-
tainty in binomial probability assessments because it
is restricted to values over a fixed interval (i.e., 0–1),
can approximate varied distributional shapes (e.g.,

6 The choice of response categories (e.g., 0–9, 10–19, . . . , 90–99,
100) is somewhat arbitrary. Different divisions are possible, but
should not influence the results reported here. In this division,
the 50 responses are included in the category 50–59%, almost all
of which are 50s.
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skew in either direction, symmetry, kurtosis, and lim-
ited bimodality), is a general form of several common
distributions (e.g., uniform, triangular), and has con-
jugate properties with the binomial distribution.(31)

The beta distribution has been used to merge sub-
jective judgments with formal probabilistic models in
large Bayesian belief networks.(32,33) It also fits with
our response distributions well.

A beta function is continuous from 0 to 1, with
shape parameters α1 and α2 that can be set to fit ob-
served CDF response distributions.7 The fitted distri-
bution shows the expected percentage of observations
in each response category, including the proportion
of 50s that would be expected in the data. We assume
that these reflect the numeric 50 responses that would
have been revealed had a probability scale been used,
with any excess 50s being the result of using 50 as a
nonnumeric proxy for “fifty-fifty.” The procedure re-
distributes responses to match the best-fit curve. Thus,
it estimates (and reduces) the number of observations
in overused response categories (such as 50) and dis-
tributes them to underused ones, as though that is
where they would have been had the scale response
mode been used.8

When applied to the entire observed distribution,
this procedure produces a beta function that is still
biased toward the middle of the range (because it in-
cludes some nonnumeric 50s). The extent of this bias
can be estimated by fitting a beta function to the ob-
served distribution, omitting all 50s.

3. AVERAGING METHOD

The second method estimates the expected per-
centage of numeric 50s (included in the 50–59% cate-
gory), as the mean of the number of responses in the
two neighboring categories, 40–49% and 60–69%.(2)

7 The beta distribution is continuous from 0 to 1, with the general
shape

if 0 < x < 1 f(x) = (xα1−1(1 − x)α2−1)
B(α1,α2)

otherwise f(x) = 0

where B(α1, α2) is the beta function defined by

B(α1, α2) =
∫ 1

0
tα1−1(1 − t)α2−1

for any real numbers α1 > 0 and α2 > 0.
8 We are not claiming that any blip is anomalous. Legitimate rea-

sons for an excess may be that it reflects the modal response, or
because subgroups of respondents have different beliefs. A peak
at 50, however, seems anomalous because it occurs systematically
across questions and can be manipulated by changes in sampling,
questions, and response modes.

The number of 50s greater than this mean is treated as
nonnumeric—reflecting the verbal phrase “fifty-fifty.”
Assuming that these excess 50s could come from any-
where in the 0–100% range, we redistributed them
over all other categories, in proportion to their exist-
ing size.

4. TESTING THE TECHNIQUES

These two redistribution techniques were applied
to the response distributions obtained with open-
ended questions (Figs. 2A and 3A).(2) If the redistribu-
tion methods are effective, there should be better cor-
respondence between the distributions with the open-
ended and probability scale response modes after the
redistribution than before. Correspondence was mea-
sured, for each question, in terms of (1) the absolute
difference in the percentage of 50s and (2) the sum
of the squared differences (SSD) between these two
percentages.

Table II presents these measures, comparing the
scale distribution with that from (1) the original, un-
corrected open-ended data; (2) the best-fit beta func-
tion, using the entire open-ended distribution; (3) the
best-fit beta function, using the open-ended distri-
bution after excluding all 50s; and (4) the averaging
rule. With both the beta and the averaging method,
an excess of 50s was observed with each open-ended
question. As a result, the correction procedures re-
duced the proportion of 50s. They also produced a
percentage of 50s closer to that found with the proba-
bility scale for each question except AIDS-from-sex in
Study 1 (where both methods overcorrected). Over-
all, the beta function produced a closer correspon-
dence with the scale distribution, with nearly iden-
tical proportions of numeric 50s. The fit was slightly
better when the beta function was fitted without the
50s than with those responses included. On average,
a slight blip remained after the averaging correction,
compared to scale responses.

The corrected open-ended distributions (Figs.
2A, 3A) also looked more like those with the proba-
bility scale (Figs. 2B, 3B) than the uncorrected open-
ended distributions (Figs. 2A, 3A). The beta func-
tion fitted with all responses reduced SSD for 8 of
10 events, the beta fitted without 50s for 6 of 10, and
the averaging method for 7 of 10. On average, the sum
of the squared differences was smallest for the beta
function fitted on the complete distribution (includ-
ing the 50s). Overall, by both criteria, each redistri-
bution method reduced the differences between the
(corrected) open-ended and scale distributions. The
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Table II. Differences Between Open-Ended Distributions and Scale Response Modes(2)

Open-Ended After
Original Open-Ended Open-Ended After Beta Correction Open-Ended After

Data Beta Correction (Without 50s) Averaging Correction

50 diff.a SSDb 50 diff.a SSDb 50 diff.a SSDb 50 diff.a SSDb

Study 1
Break-in +10% 0.022 +2% 0.014 +2% 0.016 −1% 0.017
Cancer by 80 +5% 0.030 +2% 0.018 +2% 0.015 +2% 0.027
AIDS from sex +1% 0.009 −7% 0.015 −7% 0.016 −9% 0.017
Bomb at university +3% 0.092 0% 0.107 0% 0.107 −1% 0.102

Study 2
Lightning +2% 0.003 0% 0.001 0% 0.004 0% 0.004
AIDS from sex +14% 0.040 +1% 0.038 0% 0.049 −6% 0.022
Breast cancer +15% 0.036 +4% 0.011 +3% 0.010 −1% 0.012
Alive at 50 +10% 0.044 0% 0.017 −1% 0.015 −2% 0.039
Cancer by 40 +14% 0.020 −4% 0.010 −3% 0.010 −7% 0.013
Lung cancer from smoking +14% 0.040 +6% 0.021 +6% 0.021 +4% 0.021

Average +8.5% 0.034 +0.4% 0.025 +0.2% 0.026 −2.1% 0.027

aDifference in percentages of 50s, with a positive sign indicating more 50s in the open-ended condition.
bDifferences in distributions, as measured by the sum of squared differences in histograms.

next section considers strengths and weaknesses of
each method.

5. FURTHER EVALUATION OF THE
METHODS

The beta correction, whether fitted with or with-
out the 50s, shows slightly better results than the av-
eraging technique. Its other advantages include being
based on well-understood statistical procedures and
its consideration of the cardinal values of all entered
observations. Thus, the beta function is not dispro-
portionately affected by observations of any category
and hence will smooth any unexpected blip or dip in
the distribution; it takes fuller advantage of the metric
properties of the responses.

Unfortunately, the beta distribution shows larger
sums of squared differences when the data are bi-
or multimodal, as with the AIDS-from-sex question
from Study 1.(2) Bimodality can occur with distribu-
tions that include responses from individuals repre-
senting different populations. For example, the risk of
developing breast cancer is higher for older women
than for younger ones. A sample of knowledgeable
younger and older women (e.g., mothers and daugh-
ters) would produce a bimodal distribution of per-
sonal probabilities of breast cancer. If the identity of
such subgroups is known, separate distributions could
be created. Each could be corrected separately—
merging the redistributed responses—if an overall
distribution were desired.

The averaging rule is less sensitive to bimodality
insofar as it considers only two response categories.
It faces a problem when one category is overused, for
whatever reason. Whereas the beta function would
take this into account (and level the category), the av-
eraging rule maintains the overuse by assigning more
50 responses to the category. The averaging rule will
also produce a poor fit with scale responses when the
40s or 60s category is extremely large or small, afford-
ing undue weight to chance variations.

A final problem with the averaging method arises
with distributions whose modal response is 50. In this
case, the average number of observations in the neigh-
boring categories would underestimate the expected
number of 50s. Although such a distribution may in-
clude nonnumeric 50 responses, applying the averag-
ing rule may “overcorrect” for them. This problem
does not affect the beta function, which fits the entire
distribution. As it happens, none of the questions in
Tables I and II had such a distribution.

Although the averaging rule was not as effec-
tive as the beta procedure in “de-biasing” the data in
Table II, it is much easier to use than the beta function.
Indeed, simply eyeballing a histogram of the open-
ended data gives a good indication of the proportion
of numeric 50s expected by this method—and the ex-
cess compared to what is observed.

Thus, both techniques “de-biased” the open-
ended responses in the sense of making them more
similar to scale responses using the same questions.
These distributions were taken from a study with a
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Fig. 2. Open-ended probability distribution and its beta correc-
tion (A) as well as the scale distribution (B), for the breast-cancer
question.(3)

large number of observations, allowing relatively sta-
ble estimation, with a better chance for unimodal dis-
tributions to emerge. Results could be less satisfactory
with smaller samples. Furthermore, even these results
apply only to the pooled data, indicating that some—
but not which—respondents did not mean a numeric
value when they said “50.” The beta and averaging
methods correct population statistics, rather than in-
dividual responses. The corrected data might provide
a sounder basis for general decisions (e.g., the design
of public risk communications).

The next section shows one kind of policy
application—refining expert judgments—in the con-
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Fig. 3. Open-ended probability distribution and its beta correc-
tion (A) as well as the scale distribution (B), for the alive-at-50
question.(3)

text of a model of groundwater pollution. It also asks
the empirical question of whether excess 50s will be
observed in the judgments of experts working within
their field of expertise.

6. AN EXPERT MODEL OF GROUNDWATER
POLLUTION

Stiber et al.(19) developed a causal model of
groundwater pollution to support an expert system for
evaluating the adequacy of reductive de-chlorination
as a remedial option for sites with groundwater con-
taminated by trichloroethylene (TCE). It follows the
formalism of the influence diagram.(34,35) Each node
represents a chance variable that plays a role in the
reductive de-chlorination process. An arrow means
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that the value of a node depends on the value of
the preceding node. For example, environmental con-
ditions affect anaerobic degradation by reductive de-
chlorination. These environmental conditions include
the temperature, pH, and dissolved oxygen content
of the groundwater. The bacteria that perform the
biodegradation have a range of conditions within
which their performance is optimal, and a range
within which their activity is slowed or impossible.
Changes in the value of each link cascade through
the other nodes, affecting the predicted probability of
reductive de-chlorination.

Because many of the conditional probabilities in
this influence diagram could not be obtained empiri-
cally, expert elicitation was used to complete it. Specif-
ically, 22 experts in biological degradation of chlori-
nated solvents were each asked to assess 98 different
conditional probabilities for three variations of the
model. For example, one question asked, “Given that
anaerobic degradation is occurring, what is the prob-
ability that vinyl chloride is detected?” These judg-
ments were elicited over the telephone9 using an
open-ended format similar to those often used with
lay subjects. The experts’ mean responses were used
to compute the contingencies and model predictions.

7. TESTING—AND CORRECTING—EXPERT
JUDGMENTS

7.1. Testing

The 22 experts used an excess of 50s. On average,
the percentages of 50s observed with the 98 proba-
bility questions exceeded the expected percentage by
4% according to the beta method (SD = 0.07), and by
5% according to the averaging method (SD = 0.10).
The difference ranged from −12% to 32% for the beta
and −19% to 45% for the averaging method.

According to the beta method, 58 out of the 98
questions had excess 50s; according to the averag-
ing method, 59 of 98. Though some questions showed
fewer 50s than expected by the correction procedures,

9 “Each probability can be expressed as a fraction (from 0 to 1.0);
or, as a percentage (from 0% to 100%)—whichever is more com-
fortable with you. You may use as many (or as few) decimal
places and significant figures as you feel appropriate. Please try
to provide probabilities that are as precise as possible. A proba-
bility of 1.0 (100%) means that you are completely certain about
an event’s occurrence. Similarly, a probability of 0.0 (0%) means
that you believe the event is a total impossibility. During the elic-
itation, try to imagine all possibilities and avoid using 1.0 (100%)
and 0.0 (0%) unless they are truly fitting.”

across all 98 response distributions an overuse, pos-
sibly due to nonnumeric 50s, was observed (t(97) =
7.35, p < 0.001 for the beta function; t(97) = 7.85,
p < 0.001 for the averaging rule).

7.2. Correcting

We applied the beta and averaging methods to re-
distribute excess, nonnumeric 50s for those questions
where there were more than expected (58 questions
with beta, 47 with averaging). The averaging rule was
not used on 12 questions that showed 50 as the modal
response.

In the previous section (Table II), the extent
of discrepancy was evaluated by comparing the de-
biased response distribution with that obtained using
the probability scale. Because that response mode was
not used with the experts, the corrected and uncor-
rected distributions were compared, using the SSD
criterion. Because the size of the 50 blip affects this
measure, the 50s were omitted from the calculation.
Generally, the corrected distributions showed a good
fit with the remaining categories of the original open-
ended data. The mean SSD was 0.003 (SD = 0.004)
for the beta method, and 0.002 (SD = 0.003) with the
averaging rule.

The beta method produced a mean difference
of 1.42 (SD = 4.17), with the largest being a reduc-
tion of 31.9. The averaging rule produced a mean
difference of 1.86 (SD = 1.34), with the largest be-
ing 6.87. Both corrections significantly changed the
mean expert judgment on these questions: t(57) =
2.61, p < 0.05) for the beta method and (t(46) = 9.55,
p < 0.001) for averaging.

8. DEVELOPING A PREDICTIVE MODEL

This section presents a simple model for predict-
ing the rate of excess 50s obtained with open-ended
response modes using the already examined lay(2)

and expert data(19) to estimate model parameters.
The model assumes that the likelihood of a 50 re-
sponse depends on respondents’ degree of epistemic
uncertainty and the closeness of their corresponding
numeric probability to 0.5.10 Respondents are more
likely to say “50” if they (1) experience epistemic un-
certainty and (2) have numeric probabilities closer to
0.5. To represent the first factor, we define an epistemic

10 This can be considered the probability that the respondent would
provide, if given enough time for careful reflection as well as
instruction on likely cognitive biases that can affect probability
judgments.
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Fig. 4. The effects of epistemic
uncertainty on the likelihood of a
nonnumeric 50 response.

uncertainty index (EUI) equal to 0 for well-
understood events and 1.0 for completely uninformed
priors. The second factor is an unbiased estimate of
the probability, pu, putting aside any epistemic uncer-
tainty surrounding it. The probability of a 50 response
becomes: P(responding 0.5) = f(pu, EUI).

Fig. 4 shows a family of exponential functions ex-
pressing such behavior. In domains of low epistemic
uncertainty, the probability of a 50 response is essen-
tially 0—unless the unbiased probability is close to
0.5. However, with high epistemic uncertainty, a 50
response is possible even when respondents believe
the numeric probability to be small.

If this model holds, then the observed mean prob-
ability (po) for a group of individuals with similar lev-
els of epistemic uncertainty and “true” numeric prob-
abilities would be:

Fig. 5. The effects of epistemic
uncertainty on the average probability
response.

po = f(pu, EUI) 0.5 + (1 − f(pu, EUI)) pu.

This is simply the weighted average of the “true” nu-
meric probability estimate and 0.5 (the 50 response).
Fig. 5 shows the mean observed probabilities for hy-
pothetical groups having different levels of EUI and
unbiased probability estimates.

Using the lay and expert data sets presented ear-
lier, the reasonableness of this model can be explored.
Fig. 6 is an X-Y scatter plot of the average assessed
probabilities and their corrected “true” values for the
lay and expert data for which the beta method was
significant. Overlaid on these plots are the predictive
curves for increasing levels of epistemic uncertainty
(EUI). Note that the expert responses fall much closer
to the diagonal, indicating a lower EUI, as might be
expected for individuals making judgments in their
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Fig. 6. The effects of epistemic
uncertainty on the lay(2) and expert(19)

elicitations. The corrected probability
estimates were derived using the beta
correction technique.

domains of expertise. Moreover, the experts also dis-
play relatively consistent levels of EUI across the var-
ious questions. Mean lay responses show more vari-
ance in EUI across questions, which spanned many
different topics. The consistent expert bias allows
a standard postassessment correction factor for any
questions thought to come from a domain for which
experts experience similar EUI.

The “fifty-fifty” bias leads, on average, to proba-
bility judgments closer to 0.5 than is warranted. If the
size of the bias is known, one can estimate its effects
on the expected value (or utility) of options and of
information in a given decision problem. Depending
on the decision, the bias can lead to an overestimation
or underestimation of the true values. Applying for-
mal techniques similar to those used in determining
the expected value of information in classic decision
analysis,(36) the cost of the bias can be estimated.

9. DISCUSSION

We presented two methods for estimating the
magnitude of the nonnumeric 50s and eliminating its
effects in existing open-ended data. These methods
were applied to responses from our previous study,(2)

comparing responses with open-ended and scale re-
sponse modes. The two methods showed similar
results, with the beta function performing slightly bet-
ter than the averaging rule in the sense of the distri-
butions of corrected open-ended responses distribu-
tions looking more like the scale distributions. Clearly,
these are not the only possible correction methods.
However, both performed fairly similarly in estimat-
ing the excess of 50s potentially due to epistemic un-
certainty and in redistributing them as if a probability
scale had been used.

The beta and averaging methods were also ap-
plied to the probability judgments given by ground-
water pollution experts. They showed an excess of 50s
for 60% of the 98 probability questions. Thus, even
with experts, the open-ended elicitation procedure
may have inadvertently induced nonnumeric “fifty-
fifty” responses.

In this application, the beta procedure fitted the
original response distributions less well than did the
averaging rule. Possibly, the small number of re-
sponses (from just 22 experts) resulted in less smooth
distributions, creating problems for the unimodal beta
function. If so, then the averaging rule might be rec-
ommended for redistributing nonnumeric 50s from
studies eliciting a relatively small numbers of judg-
ments with an open-ended response mode.

The predictive model (Fig. 6) indicated that the
experts(19) experienced less epistemic uncertainty
than did the lay respondents.(2) Nonetheless, the ex-
perts, too, showed an excess of 50s for most ques-
tions, with significant effects on mean probabilities.
Although we have no direct evidence that the ex-
perts’ 50 blips result from epistemic uncertainty,
our previous research suggests this relationship.(1−3)

Depending on the sensitivity of the specific decision,
such mis-estimation may have little effect or could se-
riously affect the calculations and choices. Awareness
of these possibilities can facilitate the choice of elici-
tation method or adoption of correction procedure.
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