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From the subjectivist point of view (de Finetti, 1937/1964), a probability is
a degree of belief in a proposition. It expresses a purely internal state;
there is no "right," "correct," or "objective" probability residing some-
where "in reality" against which one's degree of belief can be compared.
In many circumstances, however, it may become possible to verify the
truth or falsity of the proposition to which a probability was attached.
Today, one assesses the probability of the proposition "it will rain tomor-
row." Tomorrow, one looks at the rain gauge to see whether or not it has
rained. When possible, such verification can be used to determine the
adequacy of probability assessments.

Winkler and Murphy (1968b) have identified two kinds of "goodness"
in probability assessments: normative goodness, which reflects the degree
to which assessments express the assessor's true beliefs and conform to the
axioms of probability theory, and substantive goodness, which reflects the
amount of knowledge of the topic area contained in the assessments. This
chapter reviews the literature concerning yet another aspect of goodness,
called calibration.

If a person assesses the probability of a proposition being true as .7 and
later finds that the proposition is false, that in itself does not invalidate the
assessment. However, if a judge assigns .7 to 10,000 independent proposi-
tions, only 25 of which subsequently are found to be true, there is
something wrong with these assessments. The attribute that they lack is
called calibration; it has also been called realism (Brown & Shuford, 1973),
external validity (Brown & Shuford, 1973), realism of confidence
(Adams & Adams, 1961), appropriateness of confidence (Oskamp, 1962),
secondary validity (Murphy & Winkler, 1971), and reliability (Murphy,
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1973). Formally, a judge is calibrated if, over the long run, for all
propositions assigned a given probability, the proportion that is true
equals the probability assigned. Judges' calibration can be empirically
evaluated by observing their probability assessments, verifying the asso-
ciated propositions, and then observing the proportion true in each
response category.

The experimental literature on the calibration of assessors making
probability judgments about discrete propositions is reviewed in the first
section of this chapter. The second section looks at the calibration of
probability density functions assessed for uncertain numerical quantities.
Although calibration is essentially a property of individuals, most of the
studies reviewed here have reported data grouped across assessors in order
to secure the large quantities of data needed for stable estimates of
calibration.

Discrete propositions

Discrete propositions can be characterized according to the number of
alternatives they offer:

No alternatives: "What is absinthe?" The assessor provides an
answer, and then gives the probability that the answer given is
correct. The entire range of probability responses, from 0 to 1, is
appropriate.

One alternative: "Absinthe is a precious stone. What is the probabil-
ity that this statement is true?" Again, the relevant range of the
probability scale is 0 to 1.

Two alternatives: "Absinthe is (a) a precious stone; (b) a liqueur."
With the half-range method, the assessor first selects the more
likely alternative and then states the probability (>.5) that this
choice is correct. With the full-range method, the subject gives
the probability (from 0 to 1) that the prespecih'ed alternative is
correct.

Three or more alternatives: "Absinthe is (a) a precious stone; (b) a
liqueur; (c) a Caribbean island; (d) . . . " Two variations of this
task may be used: (1) the assessor selects the single most likely
alternative and states the probability that it is correct, using a
response >l//r for k alternatives or (2) the assessor assigns
probabilities to all alternatives, using the range 0 to 1.

For all these variations, calibration may be reported via a calibration
curve. Such a curve is derived as follows:

1. Collect many probability assessments for items whose correct
answer is known or will shortly be known to the experimenter.

2. Group similar assessments, usually within ranges (e.g., all assess-
ments between .60 and .69 are placed in the same category).
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3. Within each category, compute the proportion correct (i.e., the
proportion of items for which the proposition is true or the
alternative is correct).

4. For each category, plot the mean response (on the abscissa) against
the proportion correct (on the ordinate).

Perfect calibration would be shown by all points falling on the identity
line.

For half-range tasks, badly calibrated assessments can be either overcon-
fident, whereby the proportions correct are less than the assessed probabil-
ities, so that the calibration curve falls below the identity line, or undercon-
fident, whereby the proportions correct are greater than the assessed
probabilities and the calibration curve lies above the identity line.

For full-range tasks with zero or one alternative, overconfidence has
two possible meanings. Assessors could be overconfident in the truth of
the answer; such overconfidence would be indicated by a calibration curve
falling always below the identity line. Alternatively, assessors could be
overconfident in their ability to discriminate true from false propositions.
Such overconfidence would be shown by a calibration curve below the
identity line in the region above .5 and above the identity line in the
region below .5.

Several numerical measures of calibration have been proposed. Murphy
(1973) has explored the general case of /c-alternative items, starting with
the Brier score (1950), a general measure of overall goodness or probability
assessments such that the smaller the score, the better. The Brier score for
N items is:

where r, is a vector of the assessed probabilities for the k alternatives of
item /, r, = (ru, . . . rki), c, is the associated outcome vector, c; = (cH, . . ., cjif

. . ., cki), where cjt equals one for the true alternative and zero otherwise,
and the prime (') denotes a column vector. Murphy showed that the Brier
score can be partitioned into three additive parts. To do so, sort the N
response vectors into T subcollections such that all the response vectors, r,,
in subcollection t are identical. Let nt be the number of responses in
subcollection t, and let c, be the proportion-correct vector for subcollection
t:

ct = (clt,. . ., cjt,. . ., ckt), where cjt = J^ cjt/nt

Let c be the proportion-correct vector across all responses,

1 N

c = (cu . . ., cj,. . ., ck), where ci; = — ]T cfi
™ i=i
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Finally, let u be the unity vector, a row vector whose k elements are all
one.

Then Murphy's partition of the Brier score is:

1 T 1 T

B = c(u-c)' + - Y nt(rt ~ *t) (*# - ~ct)' ~ iTr Z nt(ct - c) (c, - c)'
i N / t=\ i V t=i

The first term is not a function of the probability assessments; rather, it
reflects the relative frequency of true events across the k alternatives. For
example, suppose all the items being assessed had the same two alterna-
tives, {rain, no rain}. Then the first term of the partition is a function of the
base rate of rain across the N items (or days). If it always (or never) rained,
this term would be zero. Its maximum value, (k - I)Ik, would indicate
maximum uncertainty about the occurrence of rain. The second term is a
measure of calibration, the weighted average of the squared difference
between the responses in a category and the proportion correct for that
category. The third term, called resolution, reflects the assessor's ability to
sort the events into subcategories for which the proportion correct is
different from the overall proportion correct.

Murphy's partition was designed for repeated predictions of the same
set of events (e.g., rain vs. no rain). When the alternatives have no
common meaning across items (e.g., in a multiple-choice examination),
then all that the first term indicates is the extent to which the correct
answer appears equally often as the first, second, etc., alternative.

When only one response per item is scored, Murphy's partition (Mur-
phy, 1972) reduces to:

B' = c(l - c) + -J- L nt(rt - ct)
2 - -J- ]T nt(ct - ~cff

where ~c is the overall proportion correct and ~ct is the proportion correct in
subcategory t. When the scored responses are the responses that are
greater than or equal to .5 (as with the two-alternative, half-range task),
the first term reflects the subject's ability to pick the correct alternative and
thus might be called knowledge. As before, the second term measures
calibration, and the third resolution.

Similar measures of calibration have been proposed by Adams and
Adams (1961) and by Oskamp (1962). None of these measures of calibra-
tion discriminates between overconfidence and underconfidence. The
sampling properties of these measures are not known.

Meteorological research

In 1906, W. Ernest Cooke, government astronomer for Western Australia,
advocated that each meteorological prediction be accompanied by a single
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number that would "indicate, approximately, the weight or degree of
probability which the forecaster himself attaches to that particular predic-
tion." (Cooke, 1906b, p. 274). He reported (Cooke, 1906a, 1906b) results
from 1,951 predictions. Of those to which he had assigned the highest
degree of probability ("almost certain to be verified"), .985 were correct.
For his middle degree of probability ("normal probability"), .938 were
correct, while for his lowest degree of probability ("doubtful"), .787 were
correct.

In 1951, Williams asked eight professional weather bureau forecasters in
Salt Lake City to assess the probability of precipitation for each of 1095
12-hour forecasts, using one of the numbers 0, .2, .4., .6, .8, and 1.0.
Throughout most of the range, the proportion of precipitation days was
lower than the probability assigned. This might reflect a fairly natural
form of hedging in public pronouncements. People are much more likely
to criticize a weather forecast that leaves them without an umbrella when
it rains than one that leads them to carry an umbrella on dry days.

Similar results emerged from a study by Murphy and Winkler (1974).
Their forecasters assessed the probability of precipitation for the next day
twice, before and after seeing output from a computerized weather
prediction system (PEATMOS). The 7,188 assessments (before and after
PEATMOS) showed the same overestimation of the probability of rain
found by Williams.

Sanders (1958) collected 12,635 predictions, using the 11 responses 0, .1.,
. . . .9, 1.0, for a variety of dichotomized events: wind direction, wind
speed, gusts, temperatures, cloud amount, ceiling, visibility, precipitation
occurrence, precipitation type, and thunderstorm. These data revealed
only a slight tendency for the forecasters' probability assessments to
exceed the proportion of weather events that occurred.1 Root (1962)
reported a symmetric pattern of calibration of 4,138 precipitation forecasts:
Assessed probabilities were too low in the low range and too high in the
high range, relative to the observed frequencies.

Winkler and Murphy (1968a) reported calibration curves for an entire
year of precipitation forecasts from Hartford, Connecticut. Each forecast
was for either a 6-hour or a 12-hour time period, with a lead time varying
from 5 to 44 hours. Unfortunately, it was unclear whether the forecasters
had included "a trace of precipitation" (less than .01 inch) in their
predictions. The data were analyzed twice, once assuming that "precipita-
tion" included the occurrence of traces and again without traces. The
inclusion or exclusion of traces had a substantial effect on calibration, as
did the time period. Six-hour forecasts with traces included and 12-hour
forecasts excluding traces exhibited excellent calibration. The calibration
curve for 12-hour forecasts with traces lay above the identity line; the
curve for 6-hour forecasts excluding traces lay well below it. Variations in
lead time did not affect calibration.
1 The references by Cooke (1906), Williams (1951), and Sanders (1958) were brought to our

attention by Raiffa (1969).
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Figure 1. Calibration data for precipitation forecasts. The number of forecasts is
shown for each point. (Source: Murphy & Winkler, 1977a.)

National Weather Service forecasters have been expressing their fore-
casts of precipitation occurrence in probabilistic terms since 1965. The
calibration for some parts of this massive data base has been published
(Murphy & Winkler, 1977a; U.S. Weather Bureau, 1969). Over the years the
calibration has improved. Figure 1 shows the calibration for 24,859 precip-
itation forecasts made in Chicago during the four years ending June 1976.
This shows remarkably good calibration; Murphy (1980) says the data for
recent years are even better! He attributes this superior performance to the
experience with probability assessment that the forecasters have gained
over the years and to the fact that these data were gathered from real
on-the-job performance.

Early laboratory research

In 1957, Adams reported the calibration of subjects who used an 11-point
confidence scale: The subject was "instructed to express his confidence in
terms of the percentage of responses, made at that particular level of
confidence, that he expects to be correct. . . . Of those responses made with
confidence p, about p% should be correct" (pp. 432-433).

In Adams's task, each of 40 words were presented tachistoscopically 10
times successively, with increasing illumination each time, to 10 subjects.
After each exposure subjects wrote down the work they thought they saw
and gave a confidence judgment. The resulting calibration curve showed
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that the proportions that were correct greatly exceeded the confidence
ratings along the entire response scale (except for the responses of 100).
Great caution must be taken in interpreting these data: Because each word
was shown 10 times, the responses are highly interdependent. It is
unknown what effect such interdependence has on calibration. Subjects
may have chosen to "hold back" on early presentations, unwilling to give
a high response when they knew that the same word would be presented
several more times.

The following year, Adams and Adams (1958) reported a training
experiment, using the same response scale but a new, three-alternative,
single-response task: For each of 156 pairs of words per session, subjects
were asked whether the words were antonyms, synonyms, or unrelated.
The mean calibration scores (based on the absolute difference, | rt - c t\) of
14 experimental subjects, who were shown calibration tallies and calibra-
tion curves after each of five sessions, decreased by 48% from the first
session to the last. Six control subjects, whose only feedback was a tally of
their unscored responses, showed a 36% mean increase in discrepancy
scores.

Adams and Adams (1961) discussed many aspects of calibration (using
the term realism of confidence), anticipating much of the work done by
others in recent years, and presented more bits of data, including the
grossly overconfident calibration curve of a schizophrenic who believed
he was Jesus Christ. In a nonsense-syllable learning task, they found large
overconh'dence on the first trial and improvement after 16 trials. They also
briefly described a transfer of training experiment: On day 1, subjects
made 108 decisions about the percentage of blue dots in an array of blue
and red dots. On days 2 and 4, the subjects decided on the truth or falsity
of 250 general knowledge statements. On day 3, they lifted weights,
blindfolded. On day 5, they made 256 decisions (synonym, antonym, or
unrelated) about pairs of words. Eight experimental subjects, given cali-
bration feedback after each of the first four days, showed on the fifth day a
mean absolute discrepancy score significantly lower than that of 8 control
(no feedback) subjects, suggesting some transfer of training. Finally,
Adams and Adams reported that across 56 subjects taking a multiple-
choice final examination in elementary psychology, poorer calibration was
associated with greater fear of failure (r = .36). Neither knowledge nor
overconfidence was related to fear of failure.

Oskamp (1962) presented subjects with 200 MMPI profiles2 as stimuli.
Half the profiles were from men admitted to a Veterans Administration
(VA) hospital for psychiatric reasons; the others were from men admitted
for purely medical reasons. The subjects' task was to decide, for each
profile, whether the patient's status was psychiatric or medical and to state

2 The MMPI (Minnesota Multiphasic Personality Inventory) is a personality inventory
widely used for psychiatric diagnosis. A profile is a graph of 13 subscores from the
inventory.
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the probability that their decision was correct. Each profile had been
independently categorized as hard (61 profiles), medium (88), or easy (51)
on the basis of an actuarially derived classification system, which correctly
identified 57%, 69%, and 92% on the hard, medium, and easy profiles,
respectively.

All 200 profiles were judged by three groups of subjects: 28 undergrad-
uate psychology majors, 23 clinical psychology trainees working at a VA
hospital, and 21 experienced clinical psychologists. The 28 inexperienced
judges were later split into two matched groups and given the same 200
profiles again. Half were trained during this second round to improve
accuracy; the rest were trained to improve calibration.

Oskamp used three measures of subjects' performance: accuracy (per-
centage correct), confidence (mean probability response), and appropriate-
ness of confidence (a calibration score):

All three groups tended to be overconfident, especially the undergrad-
uates in their first session (accuracy 70%, confidence .78). However, all
three groups were underconfident on the easy profiles (accuracy 87%,
confidence .83).

The subjects trained for accuracy increased their accuracy from 67% to
73%, approaching their confidence level, .78, which did not change as a
result of training.3 The subjects trained for calibration lowered their
confidence from .78 to .74, bringing it closer to their accuracy, 68%, which
remained unchanged. As would be expected from these changes, the
calibration score of both groups improved.

Signal detection research

In the early days of signal detection research, investigators looked into the
possibility of using confidence ratings rather than yes-no responses in
order to reduce the amounts of data required to determine stable receiver
operating characteristic (ROC) curves. Swets, Tanner, and Birdsall (1961)
asked four observers to indicate their confidence that they had heard
signal plus noise rather than noise alone for each of 1,200 trials. Although
three of the four subjects were terribly calibrated, the four calibration
curves were widely different. One subject exhibited a severe tendency to
assign too small probabilities (e.g., the signal was present over 70% of the
times when that subject used the response category ".05-.19").

Clarke (1960) presented one of five different words, mixed with noise,
to listeners through headphones. The listeners selected the word they

3 MMPI buffs might note that with this minimal training the undergraduates showed as high
an accuracy as either the best experts or the best actuarial prediction systems.
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thought they heard and then rated their confidence by indicating one of
five categories defined by slicing the probability scale into five ranges.
After each of 12 practice tests of 75 items, listeners scored their own results
and noted the percentage of correct identifications in each rating category,
thus allowing them to change strategies on the next test. Clarke found that
although all five listeners appeared well calibrated when data were
averaged over the five stimulus words, analyses for individual words
showed that the listeners tended to be overconfident for low-intelligibil-
ity words and underconfident for words of relatively high intelligibility.

Pollack and Decker (1958) used a verbally defined 6-point confidence
rating scale that ranged from "Positive I received the message correctly" to
"Positive I received the message incorrectly." With this rating scale it is
impossible to determine whether an individual is well calibrated, but it is
possible to see shifts in calibration across conditions. Calibration curves
for easy words generally lay above those for difficult words, whatever the
signal-to-noise ratio, and the curves for high signal-to-noise ratios lay
above those for low signal-to-noise ratios, whatever the word difficulty.

In most of these studies, calibration was of secondary interest; the
important question was whether confidence ratings would yield the same
ROC curves as Yes-No procedures. By 1966, Green and Swets concluded
that, in general, rating scales and Yes-No procedures yield almost identi-
cal ROC curves. Since then, studies of calibration have disappeared from
the signal detection literature.

Recent laboratory research

Over confidence. The most pervasive finding in recent research is that
people are overconfident with general-knowledge items of moderate or
extreme difficulty. Some typical results showing overconfidence are
presented in Figure 2. Hazard and Peterson (1973) asked 40 armed forces
personnel studying at the Defense Intelligence School to respond with
probabilities or with odds to 50 two-alternative general-knowledge items
(e.g., "Which magazine had the largest circulation in 1970, Playboy or
Time?"). Lichtenstein (unpublished) found similar results, using the same
items but only the probability response, with 19 Oregon Research Institute
employees, as did Phillips and Wright (1977) with different items, using
British undergraduate students as subjects.

Numerous other studies using general-knowledge questions have
shown the same overconfidence (Fischhoff, Slovic, & Lichtenstein, 1977;
Koriat, Lichtenstein, & Fischhoff, 1980; Lichtenstein & Fischhoff, 1977,
1980a, 1980b; Nickerson & McGoldrick, 1965). Cambridge and Shrecken-
gost (1978) found overconfidence with Central Intelligence Agency
analysts. Fischhoff and Slovic (1980) found severe overconfidence using a
variety of impossible or nearly impossible tasks (e.g., predicting the
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Hazard & Peterson, 1973= Probabilities
Hazard & Peterson, 1973: Odds
Phil tips & Wright, 1977
Lichtenstein (unpublished)
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Subjects' Responses

Figure 2. Calibration for half-range, general-knowledge items.

winners in 6-furlong horse races, diagnosing the malignancy of ulcers).
Pitz (1974) reported overconfidence using a full-range method.

Fischhoff, Slovic, and Lichtenstein (1977) focused on the appropriate-
ness of expressions of certainty. Using a variety of methods (no alterna-
tives, one alternative, and two alternatives with half range and full range),
they found that only 72% to 83% of the items to which responses of 1.0
were given were correct. In the full-range tasks, items assigned the other
extreme response, zero, were correct 20% to 30% of the time. Using an odds
response did not correct the overconfidence. Answers assigned odds of
1,000:1 of being correct were only 81% to 88% correct; for odds of
1,000,000:1 the correct alternative was chosen only 90% to 96% of the time.
Subjects showed no reluctance to use extreme odds; in one of the experi-
ments almost one-fourth of the responses were 1,000:1 or greater. Further
analyses showed that extreme overconfidence was not confined to just a
few subjects or a few items.

The effect of difficulty. Overconfidence is most extreme with tasks of great
difficulty (Clarke, 1960; Nickerson & McGoldrick, 1965; Pitz, 1974). With
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essentially impossible tasks (discriminating between European and Amer-
ican handwriting, Asian and European children's drawings, and rising
and falling stock prices) calibration curves did not rise at all; for all
assessed probabilities, the proportion of correct alternatives chosen was
close to .5 (Lichtenstein & Fischhoff, 1977). Subjects were not reluctant to
use high probabilities in these tasks; 70% to 80% of all responses were
greater than .5.

As tasks get easier, overconfidence is reduced. Lichtenstein and Fisch-
hoff (1977) allowed one group of subjects in the handwriting discrimina-
tion task to study a correctly labeled set of sample stimuli before making
its probability assessments. This experience made the task much easier
(71% correct versus 51% for the no-study group) and the study group was
only slightly overconfident. Lichtenstein and Fischhoff (1977) performed
post hoc analyses of the effect of difficulty on calibration using two large
collections of data from general-knowledge, two-alternative half-range
tasks. They separated easy items (those for which most subjects chose the
correct alternative) from hard items and knowledgeable subjects (those
who selected the most correct alternatives) from less knowledgeable
subjects. They found a systematic decrease in overconfidence as the
percentage correct increased. Indeed, the most knowledgeable subjects
responding to the easiest items were under confident (e.g., 90% correct
when responding with a probability of .80). This finding was replicated
with two new groups of subjects given sets of items chosen to be hard or
easy on the basis of previous subjects' performance. The resulting calibra-
tion curves are shown in Figure 3, along with the corresponding calibra-
tion curves from the post hoc analyses.

In the research just cited, difficulty was defined on the basis of subjects'
performance (Clarke, 1960; Lichtenstein & Fischhoff, 1977). More recently,
Lichtenstein and Fischhoff (1980a), following the lead of Oskamp (1962),
developed a set of 500 two-alternative general-knowledge items for which
difficulty could be defined independently. The items were of three types:
Which of two cities, states, countries, or continents is more populous (e.g.,
Las Vegas vs. Miami), which of two cities is farther in distance from a third
city (e.g., "Is Melbourne farther from Rome or from Tokyo?"), and which
historical event happened first (e.g., Magna Carta signed vs. Mohammed
born). Thus, each item had associated with it two numbers (populations,
distances, or elapsed time to the present). The ratio of the larger to the
smaller of those numbers was taken as a measure of difficulty: The 250
items with the largest ratios were designated as easy; the remaining, as
hard. This a priori classification was quite successful; over 35 subjects, the
percentage correct was 81 for easy items and 58 for hard items. These
results, too, showed overconfidence for hard items and underconfidence
for easy items.

The hard-easy effect seems to arise from assessors' inability to appre-
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Figure 3. Calibration for hard and easy tests and for hard and easy subsets of a test.

ciate how difficult or easy a task is. Phillips and Chew (unpublished)
found no correlation across subjects between percentage correct and the
subjects' ratings on an 11-point scale of the difficulty of a set of just-
completed items. However, subjects do give different distributions of
responses for different tasks; Lichtenstein and Fischhoff (1977) reported a
correlation of .91 between percentage correct and mean response across 16
different sets of data. But the differences in response distributions are less
than they should be: Over those same 16 sets of data, the proportion
correct varied from .43 to .92, while the mean response varied only from
.65 to .86.

Ferrell and McGoey (1980) have recently developed a model for the
calibration of discrete probability assessments that addresses the hard-
easy effect. The model, based on signal detection theory, assumes that
assessors transform their feelings of subjective uncertainty into a decision
variable, X, which is partitioned into sections with cutoff values {*,}. The
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assessor reports probability r, whenever X lies between xi_1 and xt. Ferrell
and McGoey assume that, in the absence of feedback about calibration
performance, the assessor will not change the set of cutoff values, {*,}, as
task difficulty changes. This assumption leads to a prediction of overconfi-
dence with hard items and underconfidence with easy items. Application
of the model to much of the data from Lichtenstein and Fischhoff (1977)
showed a moderately good fit to both the calibration curves and the
distribution of responses under the assumption that the cutoff values
remained constant as difficulty changed. Thus the hard-easy effect is seen
as an inability to change the cutoffs involved in the transformation from
feelings of certainty to probabilistic responses.

Effect of base rates. One-alternative (true-false) tasks may be characterized
by the proportion of true statements in the set of items. To be well
calibrated on a particular set of items one must take this base-rate informa-
tion into account. The signal detection model of Ferrell and McGoey
(1980) assumes that calibration is affected independently by (a) the
proportion of true statements and (b) the assessor's ability to discriminate
true from false statements. Assuming that the cutoff values, {*,}, are held
constant, the model predicts quite different effects on calibration from
changing the proportion of true statements (while holding discriminabil-
ity constant) as opposed to changing discriminability (while holding the
proportion of true statements constant). Ferrell and McGoey presented
data supporting their model. Students in three engineering courses
assessed the probability that the answers they wrote for their examina-
tions would be judged correct by the grader. Post hoc analyses separating
the subjects into four groups (high vs. low percentage of correct answers
and high vs. low discriminability) revealed the calibration differences
predicted by the model. Unpublished data collected by Fischhoff and
Lichtenstein, shown in Figure 4, also suggest support for the model. Four
groups of subjects received 25 one-alternative general-knowledge items
(e.g., "The Aeneid was written by Homer") differing in the proportion of
true statements: .08, .20, .50, and .71. The groups showed dramatically
different calibration curves, of roughly the same shape as predicted by
Ferrell and McGoey for their base-rate changing, discriminability constant
case.

Individual differences. Unqualified statements that one person is better
calibrated than another person are difficult to make, for two reasons. First,
at least several hundred responses are needed in order to get a stable
measure of calibration. Second, it appears that calibration strongly
depends on the task, particularly on the difficulty of the task. Indeed,
Lichtenstein and Fischhoff (1980a) have suggested that each person may
have an "ideal" test (i.e., a test whose difficulty level leads to neither
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Figure 4. The effect on calibration due to changes in the percentage of true
statements. (Source: Fischhoff & Lichtenstein, unpublished.)

overconfidence nor underconfidence, and thus the test on which the
person will be best calibrated). However, the difficulty level of the "ideal"
test may vary across people. Thus, even when one person is better than
another on a particular set of items, the reverse may be true for a harder or
easier set.

Comparisons between different groups of subjects have generally
shown few differences when difficulty was controlled. Graduate students
in psychology, who presumably are more intelligent than the usual
subjects (undergraduates who answered an ad in the college newspaper),
were no different in calibration (Lichtenstein & Fischhoff, 1977). Nor have
we found differences in calibration or overconfidence between males and
females (Lichtenstein & Fischhoff, 1981).

Wright and Phillips (1976) studied the relationships among several
personality measures (authoritarianism, conservatism, dogmatism, and
intolerance of ambiguity), verbal expressions of uncertainty (e.g., the
number of words such as unlikely used in short written answers to 45
questions), and several measures of calibration. The only relationships
they found between six personality scales and seven calibration measures
were two modest correlations (.41 and .34) with the authoritarianism (F)
scale. The calibration of certainty responses (i.e., responses of 1.0) was
uncorrelated with the calibration of uncertainty (<1.0) responses. The
measures of verbal uncertainty were uncorrelated with any of the numer-
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ical calibration measures. The authors concluded that probabilistic think-
ing is neither a single factor nor strongly related to individual differences
on personality measures.

Wright et al. (1978) have studied cross-cultural differences in calibra-
tion. The calibration of their British sample was shown in Figure 2
(identified there as Phillips & Wright, 1977). Their other samples were
Hong Kong, Indonesian, and Malay students. The Asian groups showed
essentially flat calibration curves. The authors speculated that fate-
oriented Asian philosophies might account for these differences.

Corrective efforts. Fischhoff and Slovic (1980) tried to ward off overconfi-
dence on the task of discriminating Asian from European children's
drawings by using explicitly discouraging instructions:

All drawings were taken from the Child Art Collection of Dr. Rhoda Kellogg, a
leading proponent of the theory that children from different countries and
cultures make very similar drawings. . . . Remember, it may well be impossible to
make this sort of discrimination. Try to do the best you can. But if, in the extreme,
you feel totally uncertain about the origin of all of these drawings, do not hesitate
to respond with .5 for every one of them. (p. 792)

These instructions lowered the mean response by about .05, but substan-
tial overconfidence was still found.

Will increased motivation improve calibration? Sieber (1974) compared
the calibration of two groups of students on a course-related set of
four-alternative items. One group was told that they were taking their
mid-term examination. The other group was told that the test was not the
mid-term but would be used to coach them for the mid-term. The two
groups did not differ in the number of correct alternatives chosen, but the
presumably more motivated group, whose performance would determine
their grade, showed significantly worse calibration (greater overconfi-
dence).

Training assessors by giving them feedback about their calibration has
shown mixed results. As mentioned, Adams and Adams (1958) found
modest improvement in calibration after five training sessions and, in a
later study (1961), some generalization of training. Choo (1976), using
only one training session with 75 two-alternative general-knowledge
items, found little improvement and no generalization.

Lichtenstein and Fischhoff (1980b) trained two groups of subjects by
giving extensive, personalized calibration feedback after each of either 2
or 10 sessions composed of 200 two-alternative general-knowledge items.
They found appreciable improvement in calibration, all of which occurred
between the first and the second session. Modest generalization occurred
for tasks with different difficulty levels, content, and response mode (four
rather than two alternatives), but no improvement was found with a
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fractile assessment task (described in the next section) or on the discrimi-
nation of European from American handwriting samples.

Another approach to improving calibration is to restructure the task in a
way that discourages overconfidence. In a study by Koriat, Lichtenstein,
and Fischhoff (1980), subjects first responded to 30 two-alternative gener-
al-knowledge items in the usual way. They then received 10 additional
items. For each item they wrote down all the reasons they could think of
that supported or contradicted either of the two possible answers, and
then made the usual choice and probability assessments. This procedure
significantly improved their calibration. An additional study helped to
pinpoint the effective ingredient of this technique. After responding as
usual to an initial set of 30 items, subjects were given 30 more items. For
each, they first chose a preferred answer, then wrote (a) one reason
supporting their chosen answer, (b) one reason contradicting their chosen
answer, or (c) two reasons, one supporting and one contradicting. Then
they assessed the probability that their chosen answer was correct. Only
the group asked to write contradicting reasons showed improved calibra-
tion. This result, as well as correlational analyses on the data from the first
study, suggests that an effective partial remedy for overconfidence is to
search for reasons why one might be wrong.

Expertise. Students taking a college course are, presumably, experts, at least
temporarily, in the topic material of the course. Sieber (1974) reported
excellent calibration for students taking a practice mid-term examination
(i.e., the group of students who were told that the test was not their
mid-term). Over 98% of their 1.0 responses and only .5% of their 0
responses were correct. Pitz (1974) asked his students to predict their
grade for his course; they also were well calibrated.

Would these subjects have been as well calibrated on items of equivalent
difficulty that were not in their area of expertise? Lichtenstein and
Fischhoff (1977) asked graduate students in psychology to respond to 50
two-alternative general-knowledge items and 50 items covering knowl-
edge of psychology (e.g., "the Ishihara test is (a) a perceptual test, (b) a
social anxiety test"). The two subtests were of equal difficulty, and the
calibration was similar for the two tasks.

Christensen-Szalanski and Bushyhead (1981) reported nine physicians'
assessments of the probability of pneumonia for 1,531 patients who were
examined because of a cough. Their calibration was abysmal; the curve
rose so slowly that for the highest confidence level (approximately
.88), the proportion of patients actually having pneumonia was less than
.20. Similar results have been reported for diagnoses of skull fracture and
pneumonia by Lusted (1977) and for diagnoses of skull fracture by
DeSmet, Fryback, and Thornbury (1979). The results of these field studies
with physicians are in marked contrast with the superb calibration of
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weather forecasters' precipitation predictions. We suspect that several
factors favor the weather forecasters. First, they have been making proba-
bilistic forecasts for years. Second, the task is repetitive; the question to be
answered (Will it rain?) is always the same. In contrast, a practicing
physician is hour by hour considering a wide array of possibilities (Is it a
skull fracture? Does she have strep? Does he need further hospitaliza-
tion?). Finally, the outcome feedback for weather forecasters is well
defined and promptly received. This is not always true for physicians;
patients fail to return or are referred elsewhere, or diagnoses remain
uncertain.

People who bet on or establish the odds for horse races might also be
considered experts. Under the pari-mutuel (or totalizator) method, the
final odds are determined by the amount of money bet on each horse,
allowing a kind of group calibration curve to be computed. Such curves
(Fabricand, 1965; Hoerl & Fallin, 1974) show excellent calibration, with
only a slight tendency for people to bet too heavily on the long shots.
However, such data are only inferentially related to probability assess-
ment. More relevant are the calibration results reported by Dowie (1976),
who studied the forecast prices printed daily by a sporting newspaper in
Britain. These predictions, in the form of odds, are made by one person for
all the horses in a given race; about eight people made the forecasts during
the year studied. The calibration of the forecasts for 29,307 horses showed
a modest underconfidence for probabilities greater than .4 and superb
calibration for probabilities less than .4 (which comprised 98% of the
data).

The burgeoning research on calibration has led to the development of a
new kind of expertise: calibration experts, who know about the common
errors people make in assessing probabilities. Lichtenstein and Fischhoff
(1980a) compared the calibration of 8 such experts with 12 naive subjects
and 15 subjects who had previously been trained to be well calibrated. The
normative experts not only overcame the overconfidence typically shown
by naive subjects but apparently overcompensated, for they were under-
confident. The experts were also slightly more sensitive to item difficulty
than the other two groups.

Future events. Wright and Wishudha (1979) have speculated that calibration
for future events may be different from that for general-knowledge
questions. If true, this would limit extrapolation from research with
general-knowledge questions to the prediction of future events. Unfortu-
nately, Wright and Wishudha's general-knowledge items were more
difficult than their future events, which could account for the superior
calibration of the latter.

Fischhoff and Beyth (1975) asked 150 Israeli students to assess the
probability of 15 then-future events, possible outcomes of President
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Nixon's much-publicized trips to China and Russia (e.g., "President Nixon
will meet Mao at least once"). The resulting calibration curve was quite
close to the identity line. However, Fischhoff and Lichtenstein (unpub-
lished) have recently found that the calibration of future events showed
the same severe overconfidence as was shown for general-knowledge
items of comparable difficulty. Phillips and Chew (unpublished) obtained
calibration curves for three sets of items: general knowledge, future
events, and past events (e.g., "a jumbo jet crashed killing more than 100
people sometime in the past 30 days"). All three curves showed overconfi-
dence. Calibration for future and past events was identical, and somewhat
better than for the general-knowledge items. The difficulty levels of the
three sets of items could not account for these results.

Jack Dowie and colleagues are now collecting calibration data at the
Open University in Milton Keynes, England, from several hundred
students in the course on risk, using course-related questions, general-
knowledge questions, and future-event questions. The students received a
general introduction to the concept of calibration and were given feed-
back about their performance and calibration. Preliminary results (Dowie,
1980) suggest that they were moderately overconfident. Calibration was
best on general-knowledge items and worst on course-related items, but
the significance and origins of these differences remain to be investi-
gated.

Continuous propositions: Uncertain quantities

The fractile method

Uncertainty about the value of an uncertain continuous quantity (e.g.,
What proportion of students prefer Scotch to bourbon? What is the
shortest distance from England to Australia?) may be expressed as a
probability density function across the possible values of that quantity.
However, assessors are not usually asked to draw the entire function.
Instead, the elicitation procedure most commonly used is some variation
of the fractile method. In this method, the assessor states values of the
uncertain quantity that are associated with a small number of predeter-
mined fractiles of the distribution. For the median or .50 fractile, for
example, the assessor states a value of the quantity such that the true value
is equally likely to fall above or below the stated value; the .01 fractile is a
value such that there is only 1 chance in 100 that the true value is smaller
than the stated value. Usually three or five fractiles, including the median,
are assessed. In a variant called the tertile method, the assessor states two
values (the .33 and .67 fractiles) such that the entire range is divided into
three equally likely sections.
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Two calibration measures are commonly reported. The interquartile
index is the percentage of items for which the true value falls inside the
interquartile range (i.e., between the .25 and the .75 fractiles). The
perfectly calibrated person will, in the long run, have an interquartile
index of 50. The surprise index is the percentage of true values that fall
outside the most extreme fractiles assessed. When the most extreme
fractiles assessed are .01 and .99, the perfectly calibrated person will have a
surprise index of 2. A large surprise index shows that the assessor's
confidence bounds have been too narrow to encompass enough of the true
values and thus indicates overconh'dence (or hyperprecision; Pitz, 1974).
Underconh'dence would be indicated by an interquartile index greater
than 50 and a low surprise index; no such data have been reported in the
literature.

The impetus for investigating the calibration of probability density
functions came from a 1969 paper by Alpert and Raiffa (1969, 21). Alpert
and Raiffa worked with Harvard Business School students, all familiar
with decision analysis. In group 1, all subjects assessed five fractiles, three
of which were .25, .50, and .75. The extreme fractiles were, however,
different for four subgroups; .01 and .99 (group A); .001 and .999 (group B);
"the minimum possible value" and "the maximum possible value" (group
C); and "astonishingly low" and "astonishingly high" (group D). The
interquartile and surprise indices for these four subgroups are shown in
Table 1. Discouraged by the enormous number of surprises, Alpert and
Raiffa then ran three additional groups (2, 3, and 4) who, after assessing 10
uncertain quantities, received feedback in the form of an extended report
and explanation of the results, along with perorations to "Spread Those
Extreme Fractiles!" The subjects then responded to 10 new uncertain
quantities. Results before and after feedback are shown in Table 1. The
subjects improved, but still showed considerable overconfidence.

Hession and McCarthy (1974) collected data comparable to Alpert and
Raiffa's first experiment, using 55 uncertain quantities and 36 graduate
students as subjects. Their instructions urged subjects to make certain that
the interval between the .25 fractile and the .75 fractile did indeed capture
half of the probability. "Later discussion with individual subjects made it
clear that this consistency check resulted in most cases in a readjustment,
decreasing the interquartile range originally assessed" (p. 7) - thus
making matters worse! This instructional emphasis, not used by Alpert
and Raiffa, may explain why Hession and McCarthy's subjects were so
badly calibrated, as shown in Table 1.

Hession and McCarthy also gave their subjects a number of individual
difference measures: authoritarianism, dogmatism, rigidity, Pettigrew's
Category-width Scale, and intelligence. The correlations of the subjects'
test scores with their interquartile and surprise indices were mostly quite
low, although the authoritarian scale correlated —.31 with the interquar-
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Table 1. Calibration summary for continuous items: Percentage of true values falling
within interquartile range and outside the extreme fractiles

Alpert & Raiffa (1969)
Group 1-A (.01, .99)
Group 1-B (.001, .999)
Group 1-C ("min" & "max")
Group 1-D ("astonishingly

high/low")
Groups 2, 3, & 4

before training
after training

Hession & McCarthy (1974)

Selvidge(1975)
Five fractiles
Seven fractiles (incl. .1 & .9)

Moskowitz & Bullers (1978)
Proportions

Three fractiles
Five fractiles

Dow-Jones
Three fractiles
Five fractiles

Pickhardt & Wallace (1974)
Group 1,

first round
fifth round

Group 2,
first round
sixth round

T. A. Brown (1973)

Lichtenstein & Fischhoff (1980b)
Pretest
Post-test

Seaver, von Winterfeldt, & Edwards
(1978)

Fractiles
Odds-fractiles
Probabilities
Odds
Log odds

Schaefer & Borcherding (1973)
First day, fractiles
Fourth day, fractiles
First day, hypothetical sample
Fourth day, hypothetical sample

N

880
500
700

700

2,270
2,270

2,035

400
520

120
145

210
210

?

?

?

?

414

924
924

160
160
180
180
140

396
396
396
396

Observed
interquartile

index"

JO

34
44

25

56
50

—
32

—
20

39
49

30
45

29

32
37

42
53
57
47
31

23
38
16
48

Surprise

Observed

46
40
47

38

34
19

47

10
7

27
42

38
64

32
20

46
24

42

41
40

34
24

5
5

20

39
12
50

6

index

Ideal

2
.2

?

?

2
2

2

2
2

2
2

2
2

2
2

2
2

2

2
2

2
2
2
2
2

2
2
2
2
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Table 1 (cont.)

Observed Surprise index
interquartile

N index" Observed Ideal

Larson & Keenan (1979)
"Reasonably Certain" 450 — 42

Pratt (1975)
"Astonishingly high/low" 175 37 5

Murphy & Winkler (1974)
Extremes were .125 & .875

Murphy & Winkler (1977b)
Extremes were .125 & .875

Stael von Holstein (1971a)

132

432

1,269

45

54

27

27

21

30

25

25

2

Note: N = total number of assessed distributions.
a The ideal percentage of events falling within the interquartile range is 50, for all
experiments except Brown (1973). He elicited the .30 and .70 fractiles, so the ideal
is 40%.

tile score and + .47 with the surprise score (N = 28). This is consistent with
Wright and Phillips's (1976) finding that authoritarianism was modestly
related to calibration.

Selvidge (1975) extended Alpert and Raiffa's work by first asking
subjects four questions about themselves (e.g., "Do you prefer Scotch or
bourbon?"). Their responses determined the true answer for these group-
generated proportions (e.g., what proportion of the subjects answering the
questionnaire preferred Scotch to bourbon?). One group gave five frac-
tiles, .01, .25, .5, .75, and .99. Another group gave those five plus two
others: .1 and .9. As shown in Table 1, the seven-fractile group did a bit
better. The five-fractile results are not as different from Alpert and Raiffa's
results as they appear. Three of Alpert and Raiffa's uncertain quantities
were group-generated proportions similar to Selvidge's items. On these
three items, Alpert and Raiffa found 57% in the interquartile range and
20% surprises. Finally, for one of the items, half the subjects in the
five-fractile group were asked to give .25, .5, and .75 first, and then to give
.01 and .99, while the other half were instructed to assess the extremes
first. Selvidge found fewer surprises for the former order (8%) than for the
latter (16%).

Moskowitz and Bullers (1978) also used group-generated proportions,
but found many more surprises than did Selvidge. One group gave the
same five fractiles that Selvidge used (in the order .5, .25, .75, .01, .99).
Another group was asked for only three assessments (the mode of the
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distribution and the .01 and .99 fractiles). Before making their assessments,
the three-fractile group received a presentation and discussion of some
typical reference events (e.g., "Consider a lottery in which 100 people are
participating. Your chance of holding the winning ticket is 1 in 100")
designed to give assessors a better understanding of the meaning of a .01
probability. As shown in Table 1, the three-fractile group had fewer
surprises than the five-fractile group. In another experiment using the
same two methods, Moskowitz and Bullers asked 44 undergraduate
commerce students to assess the average value of the Dow-Jones industrial
index for 1977, 1974, 1965, 1960, and 1950. Each subject gave assessments
before and after engaging in three-person discussions. Since no systematic
differences due to the discussions were found, the data have been
combined in Table 1. Again, the three-fractile group (who had received
the presentation on the meaning of .01) had fewer surprises than the
five-fractile group. The performance of the five-fractile group was
extremely bad.

Pickhardt and Wallace (1974) replicated Alpert and Raiffa's work with
variations. Across several groups they reported 38% to 48% surprises
before feedback and not less than 30% surprises after feedback. Two
variations, using or not using course grade credit as a reward for good
calibration and using or not using scoring rule feedback, made no differ-
ence in the number of surprises. Pickhardt and Wallace also studied the
effects of extended training: Two groups of 18 and 30 subjects (number of
uncertain quantities not reported) responded for five and six sessions with
calibration feedback after every session. Modest improvement was found,
as shown in Table 1.

Finally, Pickhardt and Wallace (1974) studied the effects of increasing
knowledge on calibration in the context of a production simulation game
called PROSIM. Thirty-two graduate students each made 51 assessments
during a simulated 17 "days" of production scheduling. Each assessment
concerned an event that would occur 1, 2, or 3 "days" hence. The closer the
time of assessment to the time of the event, the more the subject knew
about the event. Overconfidence decreased with this increased informa-
tion: There were 32% surprises with 3-day lags, 24% with 2-day lags, and
7% with 1-day lags. No improvement was observed over the 17 "days" of
the stimulation.

T.A. Brown (1973) asked 31 subjects to assess seven fractiles (.01, .10, .30,
.50, .70, .90, .99) for 14 uncertain quantities. The results, shown in Table 1,
are particularly discourging, because each question was accompanied by
extensive historical data (e.g., for "Where will the Consumer Price Index
stand in December, 1970?" subjects were given the consumer price index
for every quarter between March 1962 and June 1970). For 11 of the
questions, had the subjects given the historical minimum as their .01
fractile and the historical maximum as their .99 fractile, they would have
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had no surprises at all. The other 3 questions showed strictly increasing or
strictly decreasing histories, and the true value was close to any simple
approximation of the historical trend. The subjects must have been relying
heavily on their own erroneous knowledge to have given distributions so
tight as to produce 42% surprises.

Lichtenstein and Fischhoff (1980b) elicited five fractiles (.01, .25, .5, .75,
.99) from 12 subjects on 77 uncertain quantities both before and after the
subjects received extensive calibration training on two-alternative discrete
items. As shown in Table 1, the subjects did not significantly improve their
calibration of uncertain quantities.

Other methods

Seaver, von Winterfeldt, and Edwards (1978) studied the effects of five
different response modes on calibration. Two groups used the fractile
method, either five fractiles (.01, .25, .50, .75, .99) or the odds equivalents
of those fractiles (1:99, 1:3, 1:1, 3:1, 99:1). Three other groups responded
with probabilities, odds, or odds on a log-odds scale to one-alternative
questions that specified a particular value of the uncertain quantity (e.g.,
"What is the probability that the population of Canada in 1973 exceeded
25 million?")- Five such fixed values were given for each uncertain
quantity, and from the responses the experimenters estimated the inter-
quartile and surprise indices. For each method, seven to nine students
responded to 20 uncertain quantities. As shown in Table 1, the groups
giving probabilistic and odds responses had distinctly better surprise
indices than those using the fractile method. It is unclear whether this
superiority is due to the information communicated by the values chosen
by the experimenter. The log-odds response mode did not work out well.

Schaefer and Borcherding (1973) asked 22 students to assess 18 group-
generated proportions in each of four sessions. Each subject used two
assessment techniques: (a) the fractile method (.01, .125, .25, .5, .75, .875,
.99), and (b) the hypothetical sample method. In the latter method, the
assessor states the size, n, and the number of successes, r, of a hypothetical
sample that best reflects the assessor's knowledge about the uncertain
quantity (i.e., I feel as certain about the true value of the proportion as I
would feel were I to observe a sample of n cases with r successes). Larger
values of n reflect greater certainty about the true value of the proportion.
The ratio r/n reflects the mean of the probability density function.
Subjects had great difficulty with this method, despite instructions that
included examples of the beta distributions underlying this method. After
every session, subjects were given extensive feedback, with emphasis on
their own and the group's calibration. The results from the first and last
sessions are shown in Table 1. Improvement was found for both methods.
Results from the hypothetical sample method started out worse (50%
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surprises and only 16% in the interquartile range) but ended up better (6%
surprises and 48% in the interquartile range) than the fractile method.

Barclay and Peterson (1973) compared the tertile method (i.e., the
fractiles .33 and .67) with a "point" method in which the assessor is asked
to give the modal value of the uncertain quantity, and then two values,
one above and one below the mode, each of which are half as likely to
occur as is the modal value (i.e., points for which the probability density
function is half as high as at the mode). Using 10 almanac questions as
uncertain quantities and 70 students at the Defense Intelligence School in
a within-subjects design, they found for the tertile method that 29%
(rather than 33%) of the true answers fell in the central interval. For the
point method, only 39% fell between the two half-probable points, where-
as, for most distributions, approximately 75% of the density falls between
these points.

Pitz (1974) reported several results using the tertile method. For 19
subjects estimating the populations of 23 countries, he found only 16% of
the true values falling inside the central third of the distributions. In
another experiment he varied the items according to the depth and
richness of knowledge he presumed his subjects to have. With populations
of countries (low knowledge) he found 23% of the true values in the
central third; with heights of well-known buildings (middling knowl-
edge), 27%; and with ages of famous people (high knowledge), 47%, the
last being well above the expected 33%. In another study, he asked 6
subjects to assess tertiles and a few days later to choose among bets based
on their own tertile values. He found a strong preference for bets
involving the central region, just the reverse of what their too-tight
intervals should lead them to.

Larson and Reenan's (1979) subjects first gave their best guess at the true
answer (i.e., the mode) and then two more values that defined an interval
within which they were "reasonably certain" the correct answer lay.
Forty-two percent of the true values lay outside this region. Note how
similar this surprise index is to the indices of Alpert and Raiffa's subjects
given the verbal phrases "minimum/maximum" (47%) and "astonishingly
high/low" (38%).

Real tasks with experts

Pratt (1975) asked a single expert to predict movie attendance for 175
movies or double features shown in two local theaters over a period of
more than one year. The expert assessed the median, quartiles, and
"astonishingly high" and "astonishingly low" values. As shown in Table
1, the interquartile range tended to be too small. Even though the expert
received outcome feedback throughout the experiment, the only evidence
of improvement in calibration over time came in the first few days.
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Three experiments used weather forecasters for subjects. In two experi-
ments, Murphy and Winkler (1974, 1977b) asked weather forecasters to
give five fractiles (.125, .25, .5, .75, .875) for tomorrow's high temperature.
The results, shown in Table 1, indicate excellent calibration. These subjects
had fewer surprises in the extreme 25% of the distribution than did most of
Alpert and Raiffa's subjects in the extreme 2%! Murphy and Winkler found
that the five subjects in the two experiments who used the fractile method
were better calibrated than four other subjects who used a fixed-width
method. For the fixed-width method, the forecasters first assessed the
median temperature (i.e., the high temperature for which they believed
there was a .5 probability that it would be exceeded). Then they stated the
probability that the temperature would fall with intervals of 5°F and of
9°F centered at the median. These forecasters were overconfident; the
probability associated with the temperature falling inside the interval
tended to be too large. The superiority of the fractile method over the
fixed-width method stands in contrast to Seaver, von Winterfeldt, and
Edwards's finding that fixed-value methods were superior, perhaps
because the fixed intervals used by Murphy and Winkler (5°F and 9°F)
were noninformative.

Stael von Holstein (1971a) used three fixed-value tasks: (a) average
temperature tomorrow and the next day (dividing the entire response
range into eight categories), (b) average temperature 4 and 5 days from
now (eight categories), and (c) total amount of rain in the next 5 days (four
categories). From each set of responses (four or eight probabilities
summing to 1.0) he estimated the underlying cumulative density function.
He then combined the 1,269 functions given by 28 participants. From the
group cumulative density function shown in his article, we have estimated
the surprise and interquartile indices (see Table 1). In contrast to other
weather forecasters, these subjects were quite poorly calibrated, perhaps
because the tasks were less familiar.

Summary of calibration with uncertain quantities

The overwhelming evidence from research using fractiles to assess uncer-
tain quantites is that people's probability distributions tend to be too tight.
The assessment of extreme fractiles is particularly prone to bias. Training
improves calibration somewhat. Experts sometimes perform well (Murphy
& Winkler, 1974, 1977b), sometimes not (Pratt, 1975; Stael von Holstein,
1971a). There is some evidence that difficulty is related to calibration for
continuous propositions. Pitz (1974) and Larson and Reenan (1979) found
such an effect, and Pickhardt and Wallace's (1974) finding that 1-day lags
led to fewer surprises than 3-day lags in their simulation game is relevant
here. Several studies (e.g., Barclay & Peterson, 1973; Murphy & Winkler,
1974) have reported a correlation between the spread of the assessed
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distribution and the absolute difference between the assessed median and
the true answer, indicating that subjects do have a partial sensitivity to
how much they do or don't know. This finding parallels the correlation
between the percentage correct and the mean response with discrete
propositions.

Discussion

Why be well calibrated?

Why should a probability assessor worry about being well calibrated? Von
Winterfeldt and Edwards (1973) have shown that in most real-world
decision problems with continuous decision options (e.g., invest X dollars)
fairly large assessment errors make relatively little difference in the
expected gain. However, several considerations argue against this reassur-
ing view. First, in a two-alternative situation, the payoff function can be
quite steep in the crucial region. Suppose your doctor must decide the
probability that you have condition A, and should receive treatment A,
versus having condition B and receiving treatment B. Suppose that the
utilities are such that treatment A is better if the probability that you have
condition A is greater than or equal to .4; otherwise treatment B is better. If
the doctor assesses the probability that you have A as p(A) = .45 but is
poorly calibrated, so that the appropriate probability is .25, then the doctor
would use treatment A rather than treatment B and you would lose quite a
chunk of expected utility. Real-life utility functions of just this type are
shown by Fryback (1974).

Furthermore, when the payoffs are very large, when the errors are very
large, or when such errors compound, the expected loss looms large. For
instance, in the Reactor Safety Study (U.S. Nuclear Regulatory Commis-
sion, 1975) "at each level of the analysis a log-normal distribution of
failure rate data was assumed with 5 and 95 percentile limits defined"
(Weatherwax, 1975, p. 31). The research reviewed here suggests that
distributions built from assessments of the .05 and .95 fractiles may be
grossly biased. If such assessments are made at several levels of an
analysis, with each assessed distribution being too narrow, the errors will
not cancel each other but will compound. And because the costs of
nuclear-power-plant failure are large, the expected loss from such errors
could be enormous.

If good calibration is important, how can it be achieved? Cox (1958)
recommended that one externally recalibrate people's assessments by
fitting a model to a set of assessments for items with known answers. From
then on, the model is used to correct or adjust responses given by the
assessor. The technical difficulties confronting external recalibration are
substantial. When eliciting the assessments to be modeled, one would
have to be careful not to give the assessors any more feedback than they
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normally receive, for fear of their changing their calibration as it is being
measured. As Savage (1971) pointed out, "You might discover with
experience that your expert is optimistic or pessimistic in some respect and
therefore temper his judgments. Should he suspect you of this, however,
you and he may well be on the escalator to perdition" (p. 796). Further-
more, since research has shown that the type of miscalibration observed
depends on a task's difficulty level, one would also have to believe that the
future will match the difficulty of the events used for the recalibration.

The theoretical objections to external recalibration may be even more
serious than the practical objections. The numbers produced by a recalibra-
tion process will not, in general, follow the axioms of probability theory
(e.g., the numbers associated with mutually exclusive and exhaustive
events will not always sum to one, nor will it be generally true that
P(A) • P(B) = P(A,B) for independent events); hence, these new numbers
cannot be called probabilities.

A more fruitful approach would be to train assessors to become well
calibrated. Under what conditions might one expect that assessors could
achieve this goal? One should not expect assessors to be well calibrated
when the explicit or implicit rewards for their assessments do not motivate
them to be honest in their assessments. As an extreme example, an assessor
who is threatened with beheading should any event occur whose proba-
bility was assessed at <.25 will have good reason not to be well calibrated
with assessments of .20. Although this example seems absurd, more subtle
pressures such as "avoid being made to look the fool" or "impress your
boss" might also provide strong incentives for bad calibration. Any
rewards for either wishful thinking or denial could also bias the assess-
ments.

Receiving outcome feedback after every assessment is the best condition
for successful training. Dawid (in press) has shown that under such
conditions assessors who are honest and coherent subjectivists will expect
to be well calibrated regardless of the interdependence among the items
being assessed. In contrast, Kadane (1980) has shown that in the absence of
trial-by-trial outcome feedback, honest, coherent subjectivists will expect
to be well calibrated if and only if all the items being assessed are
independent. This theorem puts strong restrictions on the situations
under which it would be reasonable to expect assessors to learn to be well
calibrated. Even if the training process could be conducted using only
events that assessors believed were independent, there may be good
reason to doubt the independence of the real-life tasks to which the
assessors would apply their training. Important future events may be
interdependent either because they are influenced by a common underly-
ing cause or because the assessor evaluates all of them by drawing on a
common store of knowledge. In such circumstances, one would not want
or expect to be well calibrated.

The possibility that people's biases vary as a function of the difficulty of
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the tasks poses a further obstacle to calibration training in the absence of
immediate outcome feedback. The difficulty level of future tasks may be
impossible to predict, thus rendering the training ineffective.

Calibration as cognitive psychology

Experiments on calibration can be used to learn how people think. Even if
the immediate practical significance of each study is limited, it may still
provide greater understanding of how people develop and express feel-
ings of uncertainty and certainty. However, a striking aspect of much of
the literature reviewed here is its "dust-bowl empiricism/7 Psychological
theory is often absent, either as motivation for the research or as explana-
tion of the results.

Not all authors have avoided theorizing. Slovic (1972a) and Tversky and
Kahneman (197A, 1) argued that, as a result of limited information-
processing abilities, people adopt simplifying rules or heuristics.
Although generally quite useful, these heuristics can lead to severe and
systematic errors. For example, the tendency of people to give unduly
tight distributions when assessing uncertain quantities could reflect the
heuristic called "anchoring and adjustment." When asked about an uncer-
tain quantity, one naturally thinks first of a point estimate such as the
median. This value then serves as an anchor. To give the 25th or 75th
percentile, one adjusts downward or upward from the anchor. But the
anchor has such a dominating influence that the adjustment is insuffi-
cient; hence the fractiles are too close together, yielding overconfidence.

Pitz (1974), too, accepted that people's information-processing capacity
and working memory capacity are limited. He suggested that people tackle
complex problems serially, working through a portion at a time. To reduce
cognitive strain, people ignore the uncertainty in their solutions to the
early portions of the problem in order to reduce the complexity of the
calculations in later portions. This could lead to too-tight distributions and
overconfidence. Pitz also suggested that one way people estimate their
own uncertainty is by seeing how many different ways they can arrive at
an answer, that is, how many different serial solutions they can construct.
If many are found, people will recognize their own uncertainty; if few are
found, they will not. The richer the knowledge base from which to build
alternative structures, the less the tendency toward overconfidence.

Phillips and Wright (1977) presented a three-stage serial model. Their
model distinguishes people who tend naturally to think about uncertainty
in a probabilistic way from those who respond in a more black-and-white
fashion. Their work on cultural and individual differences (Wright &
Phillips, 1976, Wright et al., 1978) has attempted, with partial success, to
identify distinct cognitive styles in processing this type of information.

Koriat et al. (1980) also took an information-processing approach. They
discussed three stages for assessing probabilities. First one searches one's
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memory for relevant evidence. Next one assesses that evidence to arrive at
a feeling of certainty or doubt. Finally, one translates the certainty feeling
into a number. The manipulations used by Koriat et al. were designed to
alter the first two stages, by forcing people to search for and attend to
contradictory evidence, thereby lowering their confidence.

Ferrell and McGoey's (1980) model, on the other hand, deals entirely
with the third stage, translation of feelings of certainty into numerical
responses. By assuming that, without feedback, people are unable to alter
their translation strategies as either the difficulty of the items or the base
rate of the events changes, the model provides strong predictions that
have received support from calibration data.

Structure and process theories of probability assessment are beginning
to emerge; we hope that the further development of such theories will
serve to integrate this rather specialized held into the broader field of
cognitive psychology.
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