Carnegie Mellon Materials Science and Engineering Seminar Series

Materials Research at Carnegie Mellon

Paul R. Ohodnicki, Jr.

Graduate Research Assistant Department of Materials Science and Engineering Carnegie Mellon University

"Crystallization and Magnetic Field Processing of Co-Rich Fe,Co-Based Amorphous and Nanocrystalline Alloys"

Friday, April 4, 2008 11:30 A.M. Seminar in Baker Hall A51

Refreshments precede seminar at 10:30 A.M. in 2325 Wean Hall

Nanocrystalline/amorphous composites are "state-of-the-art" soft magnetic materials obtained by crystallizing melt-spun amorphous ribbons to form nanocrystalline transition-metal rich phase embedded within an intergranular amorphous matrix. Febased nanocomposites including the well known Finemet (Fe-Nb-Si-B), NanoPerm (Fe-Zr-B), and HiTPerm (Fe-Co-Zr-B) alloys have been studied most intensely because of large saturation inductions. However, Co-based alloys have been observed to exhibit a particularly strong response to magnetic field processing techniques which is of great technological interest.

The crystallization and response to magnetic field processing of Co-rich Co-Fe-Zr-B alloys will be discussed. For these alloys, the phase evolution is more complex than for the Fe-rich alloys. Interesting observations that will be discussed include:

- 1) Preferential nucleation of α (bcc)-phase for compositions where γ (fcc) is predicted based on the phase diagram.
- 2) The observation of a four-phase mixture of nanocrystalline α (bcc), γ (fcc) and ϵ (hcp) phases embedded in an amorphous matrix for dilute Fe-containing alloys.
- 3) A strong response to magnetic field processing for dilute Fe-containing alloys.

The results will be discussed in terms of experimental data obtained using XRD, conventional and high resolution TEM, AC permeametry, and 3DAP. A brief discussion of some of the experimental results in terms of a classical nucleation model will also be presented.

Paul received a dual Bachelor degree in Economics and Engineering Physics from the University of Pittsburgh in 2005 and a Master degree in Materials Science and Engineering from Carnegie Mellon University in 2006. He is currently a Ph.D. candidate under the guidance of Prof. McHenry and Prof. Laughlin.