
Carnegie Mellon 
Materials Science and Engineering Seminar Series 

Materials Research at Carnegie Mellon 
 

Prof. Robert Sekerka 
Carnegie Mellon University 

Physics and Mathematics 
 

“Effects of Anisotrophy and Stability on Crystal Growth 
Morphology” 

 
Friday, October 27, 2006 

11:00 A.M. Seminar in Doherty Hall 1212 
Refreshments precede seminar at 10:30 A.M. in 2325 Wean Hall 

 
Crystal growth morphology results from an interplay of crystallographic anisotropy and growth 
kinetics, the latter consisting of interfacial processes as well as long-range transport.  The 
equilibrium shape results from minimizing the anisotropic surface free energy of a crystal under 
the constraint of constant volume and is given by the classical Wulff construction but can also be 
represented by an analytical formula based on the xi-vector formalism of Hoffman and Cahn. We 
give analytic   criteria for missing orientations on the equilibrium shape in three dimensions.  
Crystals that grow under the control of interfacial kinetic processes tend asymptotically toward a 
``kinetic Wulff shape," based on the anisotropic interfacial kinetic coefficient. If capillarity is 
included, the sharp corners of this ``kinetic Wulff shape" become rounded, as shown by 
numerical computations of Yokoyama. If long-range transport were not an issue, crystals would 
presumably nucleate with their equilibrium shape and then proceed to evolve toward their 
``kinetic Wulff shape," ultimately becoming bounded by surfaces of the more slowly growing 
orientations. But long-range transport of heat or solute is important during at least some stage of a 
crystal growth process and these transport processes themselves are unstable. This leads to shape 
(morphological) instabilities on the scale of the geometric mean of a transport length and a 
capillary length. The resulting shapes can be cellular or dendritic but can also exhibit corners and 
facets related to the underlying crystallographic anisotropy. Growth subsequent to morphological 
instability can be modeled by means of the phase field model, which is a diffuse interface model 
that eliminates interface tracking.  Examples of computed cellular and dendritic morphologies 
show the trasnsition from shallow to deep cells, liquid encapsulation, dendritic sidebranching, tip 
splitting, coarsening, solute microsegregation and many other phenomena that have been 
observed experimentally.  
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